Correlation between anosognosia and regional cerebral blood flow in Alzheimer's disease.

Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
Neuroscience Letters (Impact Factor: 2.06). 05/2008; 435(1):7-10. DOI: 10.1016/j.neulet.2008.01.065
Source: PubMed

ABSTRACT The purpose of this study was to determine the brain regions associated with anosognosia in Alzheimer's disease (AD). Anosognosia for memory disturbance was assessed in 29 probable AD patients, based on the discrepancy between questionnaire scores of the patients and their caregivers. In I-123-IMP single photon emission computed tomography (SPECT), a significant association was found between anosognosia and decreased perfusion in the orbitofrontal cortex, using regression analysis. This result is consistent with the previous studies that have reported an association between frontal dysfunction and anosognosia, and further suggests that the orbitofrontal cortex specifically associates with anosognosia in AD within the frontal cortex.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Background: Unawareness of deficits is common and is associated with poor outcomes in Alzheimer's disease (AD); however, little is known about correlated neurobiochemical changes. Methods: Proton magnetic resonance spectroscopy was used to examine neurobiochemical correlates of unawareness of deficits as assessed by the Dementia Deficit Scale in 36 patients with AD. Magnetic resonance spectroscopy spectra were acquired from the anterior cingulate area and right orbitofrontal area. Concentrations of N-acetyl-aspartate (NAA), total creatine, and other neurometabolites were calculated. Results: Nineteen (52.8%) participants had relative unawareness of deficits. This condition was negatively correlated with NAA/creatine in the anterior cingulate area (β = -0.36, p = 0.025) and positively correlated with NAA/creatine in the right orbitofrontal area (β = 0.41, p = 0.009) after controlling for dementia severity. Conclusions: These findings suggest unawareness of deficits in AD was associated with the altered neurochemical metabolites in the anterior cingulate area and right orbitofrontal area. However, the two areas might have opposite neuronal functions in unawareness of deficits.
    International Psychogeriatrics 11/2013; · 1.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Awareness in dementia is increasingly recognized not only as multifactorial, but also as domain specific. We demonstrate differential clinical correlates for awareness of daily function, awareness of memory, and the novel exploration of awareness of balance. Awareness of function was higher for participants with mild cognitive impairment (aMCI and non-aMCI) than for those with dementia (due to Alzheimer disease; AD and non-AD), whereas awareness of memory was higher for both non-aMCI and non-AD dementia patients than for those with aMCI or AD. Balance awareness did not differ based on diagnostic subgroup. Awareness of function was associated with instrumental activities of daily living and caregiver burden. In contrast, awareness of balance was associated with fall history, balance confidence, and instrumental activities of daily living. Clinical correlates of awareness of memory depended on diagnostic group: associations held with neuropsychological variables for non-AD dementia, but for patients with AD dementia, depression and instrumental activities of daily living were clinical correlates of memory awareness. Together, these data provide support for the hypothesis that awareness and dementia are not unitary and are, instead, modality specific.
    Journal of aging research 01/2014; 2014:674716.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate self-awareness is essential for adapting one's tasks and goals to one's actual abilities. Patients with neurodegenerative diseases, particularly those with right frontal involvement, often present with poor self-awareness of their functional limitations that may exacerbate their already jeopardized decision-making and behaviour. We studied the structural neuroanatomical basis for impaired self-awareness among patients with neurodegenerative disease and healthy older adults. One hundred and twenty-four participants (78 patients with neurodegenerative diseases including Alzheimer's disease, behavioural variant frontotemporal dementia, right-temporal frontotemporal dementia, semantic variant and non-fluent variant primary progressive aphasia, and 46 healthy controls) described themselves on the Patient Competency Rating Scale, rating observable functioning across four domains (daily living activities, cognitive, emotional control, interpersonal). All participants underwent structural magnetic resonance imaging. Informants also described subjects' functioning on the same scale. Self-awareness was measured by comparing self and informant ratings. Group differences in discrepancy scores were analysed using general linear models, controlling for age, sex and disease severity. Compared with controls, patients with behavioural variant frontotemporal dementia overestimated their functioning in all domains, patients with Alzheimer's disease overestimated cognitive and emotional functioning, patients with right-temporal frontotemporal dementia overestimated interpersonal functioning, and patients with non-fluent aphasia overestimated emotional and interpersonal functioning. Patients with semantic variant aphasia did not overestimate functioning on any domain. To examine the neuroanatomic correlates of impaired self-awareness, discrepancy scores were correlated with brain volume using voxel-based morphometry. To identify the unique neural correlates of overlooking versus exaggerating deficits, overestimation and underestimation scores were analysed separately, controlling for age, sex, total intracranial volume and extent of actual functional decline. Atrophy related to overestimating one's functioning included bilateral, right greater than left frontal and subcortical regions, including dorsal superior and middle frontal gyri, lateral and medial orbitofrontal gyri, right anterior insula, putamen, thalamus, and caudate, and midbrain and pons. Thus, our patients' tendency to under-represent their functional decline was related to degeneration of domain-general dorsal frontal regions involved in attention, as well as orbitofrontal and subcortical regions likely involved in assigning a reward value to self-related processing and maintaining accurate self-knowledge. The anatomic correlates of underestimation (right rostral anterior cingulate cortex, uncorrected significance level) were distinct from overestimation and had a substantially smaller effect size. This suggests that underestimation or 'tarnishing' may be influenced by non-structural neurobiological and sociocultural factors, and should not be considered to be on a continuum with overestimation or 'polishing' of functional capacity, which appears to be more directly mediated by neural circuit dysfunction.
    Brain 06/2014; · 10.23 Impact Factor