Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.

Queens College, CUNY, USA.
Neuropsychologia (Impact Factor: 3.48). 02/2008; 46(7):2071-8. DOI: 10.1016/j.neuropsychologia.2008.02.007
Source: PubMed

ABSTRACT One major question toward understanding selective attention regards the efficiency of selection. One theory contends that this efficiency in vision is determined primarily by the perceptual load (PL) imposed by the relevant stimuli; if this load is high enough to fill attentional capacity, irrelevant stimuli will be excluded before they interfere with task performance, but if this load is lower the spare capacity will be directed automatically to the irrelevant information, which will then interfere with task performance. The current study attempts to test and extend this theory in order to understand better the role of PL by examining its effects on event-related brain potentials (ERPs), voltage fluctuations recorded at the scalp that reflect underlying cognitive operations. Stimuli were presented one at a time, and subjects were instructed to respond to rare deviant stimuli that appeared within a relevant stimulus channel and to ignore stimuli in an irrelevant channel, where channel was defined by either spatial (left, right) or nonspatial (red, blue) attributes in separate tasks. PL was manipulated by varying the similarity between the target/deviant and standard stimulus, and increases in PL were found to increase the magnitude of the relevant-irrelevant difference waveforms in both tasks at predicted temporal windows. These findings suggest that PL affects attentional selection that is tonically maintained across many experimental trials, and does so not only when selection is spatially based but also when it is based upon nonspatial cues.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selective attention involves the relative enhancement of relevant versus irrelevant stimuli. However, whether this relative enhancement involves primarily enhancement of attended stimuli, or suppression of irrelevant stimuli, remains controversial. Moreover, if both enhancement and suppression are involved, whether they result from a single mechanism or separate mechanisms during attentional control or selection is not known. In two experiments using a spatial cuing paradigm with task-relevant targets and irrelevant distractors, target, and distractor processing was examined as a function of distractor expectancy. Additionally, in the second study the interaction of perceptual load and distractor expectancy was explored. In both experiments, distractors were either validly cued (70%) or invalidly cued (30%) in order to examine the effects of distractor expectancy on attentional control as well as target and distractor processing. The effects of distractor expectancy were assessed using event-related potentials recorded during the cue-to-target period (preparatory attention) and in response to the task-relevant target stimuli (selective stimulus processing). Analyses of distractor-present displays (anticipated versus unanticipated), showed modulations in brain activity during both the preparatory period and during target processing. The pattern of brain responses suggest both facilitation of attended targets and suppression of unattended distractors. These findings provide evidence for a two-process model of visual-spatial selective attention, where one mechanism (facilitation) influences relevant stimuli and another (suppression) acts to filter distracting stimuli.
    Brain research 11/2010; 1359:155-77. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent behavioral studies suggest that asymmetries in visuospatial orienting are modulated by changes in the demand on nonspatial components of attention, but the brain correlates of this modulation are unknown. We used scalp-recorded event-related potentials to examine the influence of central attentional load on neural responses to lateralized visual targets. Forty-five participants were required to detect transient, unilateral visual targets while monitoring a stream of alphanumeric stimuli at fixation, in which the target was defined either by a unique feature (low load) or by a conjunction of features (high load). The earliest effect of load on spatial orienting was seen at the latency of the posterior N1 (190-240 ms). The commonly observed N1 enhancement with contralateral visual stimulation was attenuated over the right hemisphere under high load. Source analysis localized this effect to occipital and inferior parietal regions of the right hemisphere. In addition, we observed perceptual enhancement with increasing load within the focus of attention (fixation) at an earlier stage (P1, 90-140 ms) than has previously been reported. These data support the view that spatial asymmetries in visual orienting are modulated by nonspatial attention due to overlapping neural circuits within the right hemisphere.
    Cerebral Cortex 05/2011; 21(5):1056-65. · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing literature suggests that working memory and attention are closely related constructs. Both involve the selection of task-relevant information, and both are characterized by capacity limits. Furthermore, studies using a variety of methodological approaches have demonstrated convergent working memory and attention-related processing at the individual, neural and behavioral level. Given the varieties of both constructs, the specific kinds of attention and WM must be considered. We find that individuals' working memory capacity (WMC) uniquely interacts with feature-based attention when combined with spatial attention in a cuing paradigm (Posner, 1980). Our findings suggest a positive correlation between WM and feature-based attention only within the spotlight of spatial attention. This finding lends support to the controlled attention view of working memory by demonstrating that integrated feature-based expectancies are uniquely correlated with individual performance on a working memory task.
    Attention Perception & Psychophysics 01/2011; 73(1):86-102. · 1.97 Impact Factor