Article

Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease.

Division of Endocrinology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 05/2008; 82(4):822-33. DOI: 10.1016/j.ajhg.2008.01.015
Source: PubMed

ABSTRACT The genetic basis for association of the PARK11 region of chromosome 2 with familial Parkinson disease (PD) is unknown. This study examined the GIGYF2 (Grb10-Interacting GYF Protein-2) (TNRC15) gene, which contains the PARK11 microsatellite marker with the highest linkage score (D2S206, LOD 5.14). The 27 coding exons of the GIGYF2 gene were sequenced in 123 Italian and 126 French patients with familial PD, plus 131 Italian and 96 French controls. A total of seven different GIGYF2 missense mutations resulting in single amino acid substitutions were present in 12 unrelated PD index patients (4.8%) and not in controls. Three amino acid insertions or deletions were found in four other index patients and absent in controls. Specific exon sequencing showed that these ten sequence changes were absent from a further 91 controls. In four families with amino acid substitutions in which at least one other PD case was available, the GIGYF2 mutations (Asn56Ser, Thr112Ala, and Asp606Glu) segregated with PD. There were, however, two unaffected carriers in one family, suggesting age-dependent or incomplete penetrance. One index case (PD onset age 33) inherited a GIGYF2 mutation (Ile278Val) from her affected father (PD onset age 66) and a previously described PD-linked mutation in the LRRK2 gene (Ile1371Val) from her affected mother (PD onset age 61). The earlier onset and severe clinical course in the index patient suggest additive effects of the GIGYF2 and LRRK2 mutations. These data strongly support GIGYF2 as a PARK11 gene with a causal role in familial PD.

0 Followers
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of causative genes in mendelian forms of Parkinson's disease is valuable for understanding the cause of the disease. We did genetic studies in a Japanese family with autosomal dominant Parkinson's disease to identify novel causative genes. We did a genome-wide linkage analysis on eight affected and five unaffected individuals from a family with autosomal dominant Parkinson's disease (family A). Subsequently, we did exome sequencing on three patients and whole-genome sequencing on one patient in family A. Variants were validated by Sanger sequencing in samples from patients with autosomal dominant Parkinson's disease, patients with sporadic Parkinson's disease, and controls. Participants were identified from the DNA bank of the Comprehensive Genetic Study on Parkinson's Disease and Related Disorders (Juntendo University School of Medicine, Tokyo, Japan) and were classified according to clinical information obtained by neurologists. Splicing abnormalities of CHCHD2 mutants were analysed in SH-SY5Y cells. We used the Fisher's exact test to calculate the significance of allele frequencies between patients with sporadic Parkinson's disease and unaffected controls, and we calculated odds ratios and 95% CIs of minor alleles. We identified a missense mutation (CHCHD2, 182C>T, Thr61Ile) in family A by next-generation sequencing. We obtained samples from a further 340 index patients with autosomal dominant Parkinson's disease, 517 patients with sporadic Parkinson's disease, and 559 controls. Three CHCHD2 mutations in four of 341 index cases from independent families with autosomal dominant Parkinson's disease were detected by CHCHD2 mutation screening: 182C>T (Thr61Ile), 434G>A (Arg145Gln), and 300+5G>A. Two single nucleotide variants (-9T>G and 5C>T) in CHCHD2 were confirmed to have different frequencies between sporadic Parkinson's disease and controls, with odds ratios of 2·51 (95% CI 1·48-4·24; p=0·0004) and 4·69 (1·59-13·83, p=0·0025), respectively. One single nucleotide polymorphism (rs816411) was found in CHCHD2 from a previously reported genome-wide association study; however, there was no significant difference in its frequency between patients with Parkinson's disease and controls in a previously reported genome-wide association study (odds ratio 1·17, 95% CI 0·96-1·19; p=0·22). In SH-SY5Y cells, the 300+5G>A mutation but not the other two mutations caused exon 2 skipping. CHCHD2 mutations are associated with, and might be a cause of, autosomal dominant Parkinson's disease. Further genetic studies in other populations are needed to confirm the pathogenicity of CHCHD2 mutations in autosomal dominant Parkinson's disease and susceptibility for sporadic Parkinson's disease, and further functional studies are needed to understand how mutant CHCHD2 might play a part in the pathophysiology of Parkinson's disease. Japan Society for the Promotion of Science; Japanese Ministry of Education, Culture, Sports, Science and Technology; Japanese Ministry of Health, Labour and Welfare; Takeda Scientific Foundation; Cell Science Research Foundation; and Nakajima Foundation. Copyright © 2015 Elsevier Ltd. All rights reserved.
    The Lancet Neurology 02/2015; 14(3). DOI:10.1016/S1474-4422(14)70266-2 · 21.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects ~2% of the global population aged ≥65 years. Grb10-interacting GYF protein-2 (GIGYF2) can influence the development of PD through the regulation of insulin-like growth factor-1. The aim of the present meta-analysis study was to establish the contribution of GIGYF2 polymorphisms to PD. The study was conducted based on nine eligible studies consisting of 7,246 PD patients and 7,544 healthy controls. The results indicated that the GIGYF2 C.3630A>G polymorphism increased the risk of PD by 37% [P=0.008; odds ratio (OR), 1.37; 95% confidence interval (CI), 1.08-1.73] and that the GIGYF2 C.167G>A polymorphism was significantly associated with PD (P=0.003; OR, 3.67; 95% CI, 1.56-8.68). The meta-analyses of the other five GIGYF2 polymorphisms (C.1378C>A, C.1554G>A, C.2940A>G, C.1370C>A and C.3651G>A) did not reveal any significant associations. The present meta-analyses of the GIGYF2 genetic polymorphisms may provide a comprehensive overview of this PD candidate gene for future studies.
    11/2014; 2(6):886-892. DOI:10.3892/br.2014.324
  • Source

Full-text (2 Sources)

Download
15 Downloads
Available from
Aug 4, 2014