Article

Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: A possible role in progressive neurodegeneration

Department of Neurology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
Neurobiology of aging (Impact Factor: 4.85). 04/2008; 30(11):1818-24. DOI: 10.1016/j.neurobiolaging.2008.02.002
Source: PubMed

ABSTRACT Cerebrovascular P-glycoprotein (P-gp) acts at the blood-brain barrier (BBB) as an active cell membrane efflux pump for several endogenous and exogenous compounds. Age-associated decline in P-gp function could facilitate the accumulation of toxic substances in the brain, thus increasing the risk of neurodegenerative pathology with aging. We hypothesised a regionally reduced BBB P-gp function in older healthy subjects. We studied cerebrovascular P-gp function using [(11)C]-verapamil positron emission tomography (PET) in seventeen healthy volunteers with age 18-86. Logan analysis was used to calculate the distribution volume (DV) of [(11)C]-verapamil in the brain. Statistical Parametric Mapping was used to study specific regional differences between the older compared with the younger adults. Older subjects showed significantly decreased P-gp function in internal capsule and corona radiata white matter and in orbitofrontal regions. Decreased BBB P-gp function in those regions could thus explain part of the vulnerability of the aging brain to white matter degeneration. Moreover, decreased BBB P-gp function with aging could be a mechanism by which age acts as the main risk factor for the development of neurodegenerative disease.

Download full-text

Full-text

Available from: Anna L Bartels, Jun 23, 2015
2 Followers
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ageing is the main risk factor for the development of dementing neurodegenerative diseases (NDs) and it is accompanied by the accumulation of variations in mitochondrial DNA. The resulting tissue-specific alterations in ATP production and availability cause deteriorations of cerebral clearance mechanisms that are important for the removal of toxic peptides and its aggregates. ABC transporters were shown to be the most important exporter superfamily for toxic peptides, e.g. β-amyloid and α-synuclein. Their activity is highly dependent on the availability of ATP and forms a directed energy-exporter network, linking decreased mitochondrial function with highly impaired ABC transporter activity and disease progression. In this paper, we describe a network based on interactions between ageing, energy metabolism, regeneration, accumulation of toxic peptides and the development of proteopathies of the brain with a focus on Alzheimer's disease (AD). Additionally, we provide new experimental evidence for interactions within this network in regenerative processes in AD.
    Mechanisms of ageing and development 09/2013; 134(10). DOI:10.1016/j.mad.2013.08.007 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathophysiology of Parkinson's disease (PD) has not yet been completely elucidated. However, during the past few years, significant progress has been made in understanding the intra- and extracellular mechanisms by which proteins such as alpha-synuclein and neuroinflammatory molecules may display impaired function and/or expression in PD. Recent developments in imaging techniques based on positron emission tomography (PET) and single photon emission computed tomography (SPECT) now allow the non-invasive tracking of such molecular targets of known relevance to PD in vivo. This article summarizes recent PET and SPECT studies of new radiopharmaceuticals and discusses their potential role and perspectives for use in the fields of new drug development and early diagnosis for PD, as well to aid in differential diagnosis and monitoring of the progression of PD.
    08/2013; 3(3). DOI:10.3233/JPD-130207
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters. P-glycoprotein, an efflux pump highly expressed at the endothelial cells of the blood-brain barrier, has been shown to transport amyloid-β. P-glycoprotein function can be assessed in vivo using (R)-[(11)C]verapamil and positron emission tomography. The aim of this study was to assess blood-brain barrier P-glycoprotein function in patients with Alzheimer's disease compared with age-matched healthy controls using (R)-[(11)C]verapamil and positron emission tomography. In 13 patients with Alzheimer's disease (age 65 ± 7 years, Mini-Mental State Examination 23 ± 3), global (R)-[(11)C]verapamil binding potential values were increased significantly (P = 0.001) compared with 14 healthy controls (aged 62 ± 4 years, Mini-Mental State Examination 30 ± 1). Global (R)-[(11)C]verapamil binding potential values were 2.18 ± 0.25 for patients with Alzheimer's disease and 1.77 ± 0.41 for healthy controls. In patients with Alzheimer's disease, higher (R)-[(11)C]verapamil binding potential values were found for frontal, parietal, temporal and occipital cortices, and posterior and anterior cingulate. No significant differences between groups were found for medial temporal lobe and cerebellum. These data show altered kinetics of (R)-[(11)C]verapamil in Alzheimer's disease, similar to alterations seen in studies where P-glycoprotein is blocked by a pharmacological agent. As such, these data indicate that P-glycoprotein function is decreased in patients with Alzheimer's disease. This is the first direct evidence that the P-glycoprotein transporter at the blood-brain barrier is compromised in sporadic Alzheimer's disease and suggests that decreased P-glycoprotein function may be involved in the pathogenesis of Alzheimer's disease.
    Brain 11/2011; 135(Pt 1):181-9. DOI:10.1093/brain/awr298 · 10.23 Impact Factor