Functional segregation of a predicted "hinge" site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase.

Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801-3732, USA.
Biochemistry (Impact Factor: 3.38). 05/2008; 47(16):4808-16. DOI: 10.1021/bi702494q
Source: PubMed

ABSTRACT Some aminoacyl-tRNA synthetases (AARSs) employ an editing mechanism to ensure the fidelity of protein synthesis. Leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA synthetase (IleRS), and valyl-tRNA synthetase (ValRS) share a common insertion, called the CP1 domain, which is responsible for clearing misformed products. This discrete domain is connected to the main body of the enzyme via two beta-strand tethers. The CP1 hydrolytic editing active site is located approximately 30 A from the aminoacylation active site in the canonical core of the enzyme, requiring translocation of mischarged amino acids for editing. An ensemble of crystal and cocrystal structures for LeuRS, IleRS, and ValRS suggests that the CP1 domain rotates via its flexible beta-strand linkers relative to the main body along various steps in the enzyme's reaction pathway. Computational analysis suggested that the end of the N-terminal beta-strand acted as a hinge. We hypothesized that a molecular hinge could specifically direct movement of the CP1 domain relative to the main body. We introduced a series of mutations into both beta-strands in attempts to hinder movement and alter fidelity of LeuRS. Our results have identified specific residues within the beta-strand tethers that selectively impact enzyme activity, supporting the idea that beta-strand orientation is crucial for LeuRS canonical core and CP1 domain functions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We substantiate our preliminary description of the class I tryptophanyl-tRNA synthetase minimal catalytic domain with details of its construction, structure, and steady-state kinetic parameters. Generating that active fragment involved deleting 65% of the contemporary enzyme, including the anticodon-binding domain and connecting peptide 1, CP1, a 74-residue internal segment from within the Rossmann fold. We used protein design (Rosetta), rather than phylogenetic sequence alignments, to identify mutations to compensate for the severe loss of modularity, thus restoring stability, as evidenced by renaturation described previously and by 70-ns molecular dynamics simulations. Sufficient solubility to enable biochemical studies was achieved by expressing the redesigned Urzyme as a maltose-binding protein fusion. Michaelis-Menten kinetic parameters from amino acid activation assays showed that, compared with the native full-length enzyme, TrpRS Urzyme binds ATP with similar affinity. This suggests that neither of the two deleted structural modules has a strong influence on ground-state ATP binding. However, tryptophan has 10(3) lower affinity, and the Urzyme has comparably reduced specificity relative to the related amino acid, tyrosine. Molecular dynamics simulations revealed how CP1 may contribute significantly to cognate amino acid specificity. As class Ia editing domains are nested within the CP1, this finding suggests that this module enhanced amino acid specificity continuously, throughout their evolution. We call this type of reconstructed protein catalyst an Urzyme (Ur prefix indicates original, primitive, or earliest). It establishes a model for recapitulating very early steps in molecular evolution in which fitness may have been enhanced by accumulating entire modules, rather than by discrete amino acid sequence changes.
    Journal of Biological Chemistry 12/2010; 285(49):38590-601. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that charge tRNA with its cognate amino acid. In order to maintain fidelity during protein synthesis, editing mechanisms ensure that tRNAs are accurately charged. Leucyl-tRNA synthetase (LeuRS) has an editing active site that resides in a discrete domain called the connective polypeptide 1 domain (CP1). Post-transfer editing involves the translocation of mischarged tRNA from the aminoacylation to the editing active site where mischarged tRNA binds for hydrolysis of the noncognate amino acid to enhance fidelity. Based on crystal structure analysis, the CP1 domain rotates 30° relative to the canonical core where aminoacylation occurs during tRNA translocation and presumably facilitates the movement of tRNA from the core domain to the editing domain. Single molecule fluorescence resonance energy transfer (smFRET) techniques were employed to characterize this dynamic movement of tRNA from one domain of the enzyme to another. Human cytoplasmic LeuRS (hscLeuRS) is typically found in a macromolecular complex containing at least eight other proteins. In order to study this enzyme, hscLeuRS was expressed independent of the complex in Escherichia coli. Enzymatic characterization of the isolated hscLeuRS suggested that it attaches a second leucine to Leu-tRNALeu. Liquid chromatography and mass spectrometry methods were used in an attempt to isolate this hypothesized “doubly charged” tRNA species and it is possible that hscLeuRS possesses a secondary function beyond aminoacylation reliant on a doubly charged Leu-Leu-tRNALeu. Further biochemical analysis of the hscLeuRS focused on its editing pocket. The editing site of hscLeuRS includes a highly conserved threonine discriminator and universally conserved aspartic acid that were mutationally characterized. Substitution of threonine to alanine uncoupled specificity similar to other LeuRSs. However, the introduction of bulky residues in the amino acid binding pocket failed to block deacylation of tRNA, indicating that the architecture of the amino acid binding pocket is different compared to other characterized LeuRSs. In addition, mutation of the universally conserved aspartic acid abolished tRNALeu deacylation. Surprisingly though, this editing-defective hscLeuRS maintained fidelity. This indicates that an alternate editing mechanism may have been activated upon failure of the post-transfer editing active site in order to maintain fidelity during protein synthesis.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases has also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases.For further resources related to this article, please visit the WIREs website.Conflict of interest: The authors have declared no conflicts of interest for this article.
    WIREs RNA 04/2014; · 4.19 Impact Factor


Available from