Article

Mixture design applied to optimize a directly compressible powder produced via cospray drying

Laboratory of Pharmaceutical Technology, Ghent University, Gent, Belgium.
Drug Development and Industrial Pharmacy (Impact Factor: 2.01). 04/2008; 34(3):248-57. DOI: 10.1080/03639040701542143
Source: PubMed

ABSTRACT Coprocessing via spray drying was applied to improve the compactability of acetaminophen and to select an optimal formulation. Four-component mixtures containing acetaminophen, mannitol, erythritol, and maltodextrin were produced by cospray drying. A D-optimal mixture design was constructed to evaluate the spray dried powder and tablet properties. An increasing mannitol and erythritol content improved powder flowability and density. However, a higher erythritol concentration in the spray dried powder mixture had a negative influence on tablet tensile strength and friability. A higher maltodextrin content increased tablet tensile strength and improved tablet friability, while disintegration time, average particle size, powder flowability, density, and hygroscopicity were negatively influenced.

4 Followers
 · 
230 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is necessary to have excipients with excellent functional properties to compensate for the poor mechanical properties and low aqueous solubility of the emerging active ingredients. Therefore, around 80% of the current drugs are not suitable for direct compression and more advanced excipients are required. Further, conventional grades of excipients cannot accommodate the technologically advanced high speed rotary tablet presses which require a powder with excellent flow, good compressibility, compactibility, particle size distribution and homogeneity of the ingredients. Co-processed excipients have been created to enhance the functional properties of the excipients and reduce their drawbacks. Co-processing is defined as the combination of two or more excipients by a physical process. Co-processed excipients are adequate for direct compression since they become multifunctional and thus, their dilution potential is high eliminating the need for many excipients in a formulation. In some cases, they are able to hold up to 50% of the drug in a formulation rendering compacts of good tableting properties. This study describes and discusses the functionality enhancement of commercial and investigational excipients through co-processing.
    Drug Development and Industrial Pharmacy 10/2012; 38(10):1159-70. DOI:10.3109/03639045.2011.645833 · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to develop spray dried self-nanoemulsifying drug delivery system (SNEDDS) tablets of rosuvastatin using mannitol as a carrier. SNEDDS were prepared using Capryol 90, poloxamer 407 and Transcutol P or triacetin as oil, surfactant and cosurfactants, respectively. The prepared systems were characterized and their cytotoxicity was evaluated using Caco-2 cell lines. A comparative bioavailability study was performed in human volunteers relative to the conventional commercial product. Results showed better self-nanoemulsifying ability of systems containing triacetin compared to Transcutol P. SNEDDS formed uni-modal nanoemulsion droplet size distributions with droplet size less than 50 nm and polydispersity index values ranging from 0.127 to 0.275. The solubilizing capacity of rosuvastatin was affected by both surfactant and cosurfactant concentrations. Upon spray drying, systems prepared using Transcutol P tended to be soft and tacky and were sticking to the walls of the dryer. The redispersion of rosuvastatin from solid SNEDDS was very fast (100% within 5 minutes). Optimized SNEDDS prepared with triacetin were safe with no cytotoxic effect on Caco-2 cells. The anticancer effect of rosuvastatin was enhanced when incorporated in SNEDDS (IC50 value decreased from 4 to 3 microg/ml) due to the increase in penetration of SNEDDS inside the cells. The relative bioavailability for SNEDDS tablets compared to the commercial tablets was 167%. The effective solubilization, penetration and enhancement in bioavailability of SNEDDS tablets proves their potential as a safe, and effective drug delivery system for poorly-soluble drugs.
    Journal of Biomedical Nanotechnology 01/2013; 9(1):26-39. DOI:10.1166/jbn.2013.1469 · 7.58 Impact Factor
  • Source

Preview

Download
3 Downloads
Available from