Cellular and molecular mechanisms that mediate basal and tumour necrosis factor-α-induced regulation of myosin light chain kinase gene activity

Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, NM 87131-0001, USA.
Journal of Cellular and Molecular Medicine (Impact Factor: 4.01). 04/2008; 12(4):1331-46. DOI: 10.1111/j.1582-4934.2008.00302.x
Source: PubMed


The patients with Crohn's disease (CD) have a 'leaky gut' manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-alpha (TNF-alpha) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-alpha is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-alpha increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-alpha-induced increase in MLCK gene activity. By progressive 5' deletion, minimal MLCK promoter was localized between -313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-alpha-induced increase in MLCK promoter activity was mediated by NF-kappaB activation. There were eight kappaB binding sites on MLCK promoter. The NF-kappaB1 site at +48 to +57 mediated TNF-alpha-induced increase in MLCK promoter activity. The NF-kappaB2 site at -325 to -316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-kappaB dimer type binding to the kappaB sites. p50/p65 dimer preferentially binds to the NF-kappaB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-kappaB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-alpha-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate basal and TNF-alpha-induced modulation of MLCK gene activity.

8 Reads
  • Source
    • "The real-time PCRs were carried out using ABI prism 7900 sequence detection system and Taqman universal PCR master mix kit (Applied Biosystems, Branchburg, NJ) as previously described [27], [28]. Each real-time PCR reaction contained 10 µl RT reaction mix, 25 µl 2× Taqman universal PCR master mix, 0.2 µM probe, and 0.6 µM primers. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Defective intestinal epithelial tight junction (TJ) barrier has been shown to be a pathogenic factor in the development of intestinal inflammation. Interleukin-6 (IL-6) is a pleiotropic, pro-inflammatory cytokine which plays an important role in promoting inflammatory response in the gut and in the systemic circulation. Despite its key role in mediating variety inflammatory response, the effect of IL-6 on intestinal epithelial barrier remains unclear. The purpose of this study was to investigate the effect of IL-6 on intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved using in-vitro (filter-grown Caco-2 monolayers) and in-vivo model (mouse intestinal perfusion) systems. Our results indicated that IL-6 causes a site-selective increase in Caco-2 intestinal epithelia TJ permeability, causing an increase in flux of small-sized molecules having molecular radius <4 Å. The size-selective increase in Caco-2 TJ permeability was regulated by protein-specific increase in claudin-2 expression. The IL-6 increase in TJ permeability required activation of JNK signaling cascade. The JNK pathway activation of AP-1 resulted in AP-1 binding to its binding sequence on the claudin-2 promoter region, leading to promoter activation and subsequent increase in claudin-2 gene transcription and protein synthesis and TJ permeability. Our in-vivo mouse perfusion showed that IL-6 modulation of mouse intestinal permeability was also mediated by AP-1 dependent increase in claudin-2 expression. In conclusion, our studies show for the first time that the IL-6 modulation of intestinal TJ permeability was regulated by JNK activation of AP-1 and AP-1 activation of claudin-2 gene.
    PLoS ONE 03/2014; 9(3):e85345. DOI:10.1371/journal.pone.0085345 · 3.23 Impact Factor
  • Source
    • "It had been shown that MLCK in human intestinal cells leads to TNF-induced collapse of epithelial TJ via TNFR2 signaling [29] and that MLCK promoter activity is mediated by NF-κB [30], [31], [32]. Therefore, in our study, MOC1 cells were transfected with the TNRF2 siRNA to determine MLCK activities in the presence of rTNF. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that prolonged inflammatory bowel diseases (IBD) may lead to colitis-associated carcinogenesis (CAC). We previously observed that the NF-κB activation in colonic epithelial cells is associated with increased tumor necrosis factor receptor 2 (TNFR2) expression in CAC development. However, the mechanism by which epithelial NF-κB activation leading to CAC is still unclear. Myosin light chain kinase (MLCK) has been reported to be responsible for the epithelial permeability associated with TNF signaling. Therefore we focused on the role of MLCK expression via TNFR2 signaling on CAC development. Pro-tumorigenic cytokines such as IL-1β, IL-6 and MIP-2 production as well as INF-γ and TNF production at the lamina propria were increased in the setting of colitis, and further in tumor tissues in associations with up-regulated TNFR2 and MLCK expressions in the epithelial cells of a CAC model. The up-regulated MLCK expression was observed in TNF-stimulated colonic epithelial cells in a dose-dependent fashion in association with up-regulation of TNFR2. Silencing TNFR2, but not TNFR1, resulted in restoration of epithelial tight junction (TJ) associated with decreased MLCK expression. Antibody-mediated blockade of TNF signaling also resulted in restoration of TJ in association with suppressed MLCK expression, and interestingly, similar results were observed with suppressing TNFR2 and MLCK expressions by inhibiting MLCK in the epithelial cells. Silencing of MLCK also resulted in suppressed TNFR2, but not TNFR1, expression, suggesting that the restored TJ leads to reduced TNFR2 signaling. Such suppression of MLCK as well as blockade of TNFR2 signaling resulted in restored TJ, decreased pro-tumorigenic cytokines and reduced CAC development. These results suggest that MLCK may be a potential target for the prevention of IBD-associated tumor development.
    PLoS ONE 02/2014; 9(2):e88369. DOI:10.1371/journal.pone.0088369 · 3.23 Impact Factor
  • Source
    • "Proinflammatory cytokines are known to activate nuclear transcription factor NF-κB. Previous studies have revealed that NF-κB activation is involved in barrier function disruption as well as MLCK up-regulation in proinflammatory cytokine-treated intestinal epithelial cells [11], [40], [41], and that berberine is able to inhibit NF-κB activation [23], [42]. Thus, based on the above results, we further determined whether NF-κB signaling pathway was involved in the protective effects of berberine on IFN-γ and TNF-α-induced intestinal barrier dysfunction, and MLCK up-regulation as well. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal barrier dysfunction occurs in many intestinal diseases, in which proinflammatory cytokines play critical roles. However, researchers are still on the way to defining the underlying mechanisms and to evaluate therapeutic strategies for restoring intestinal barrier function. Berberine, a drug that has clinically been used to treat gastroenteritis and diarrhea for thousands of years, has been shown to protect barrier function in both endothelial and epithelial cells, but the mechanisms are completely unknown. In this study, we investigate the protective actions of berberine on barrier function and the underlying mechanisms in Caco-2 monolayers challenged with IFN-γ and TNF-α. Caco-2 monolayers were treated without or with simultaneous IFN-γ and TNF-α in the absence or presence of berberine. Both transepithelial electrical resistance (TER) and paracellular permeability were measured to evaluate barrier function. The expression and distribution of tight junction proteins ZO-1, occluding, and claudin-1 were respectively analyzed by immunoblot or immunofluorescence. The expressions of phosphorylated myosin light chain (pMLC), MLC kinase (MLCK) and hypoxia-inducible factor-1α (HIF-1α) were determined by immunoblot. The translocation of NF-κB p65 to nuclei was analyzed by immunofluorescence and immunoblot, respectively. The results showed that berberine significantly attenuated TER decrease and paracellular permeability increase in Caco-2 monolayers treated with IFN-γ and TNF-α. Berberine also dramatically alleviated IFN-γ and TNF-α-induced morphological alteration of tight junction proteins ZO-1, occluding, and claudin-1. The increase of both MLC phosphorylation and MLCK protein expression induced by IFN-γ and TNF-α was significantly inhibited by berberine treatment. Additionally, berberine suppressed the activation of HIF-1α, but not NF-κB. Taken together, it is suggested that berberine attenuates IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by inhibiting the signaling pathway of MLCK-dependent MLC phosphorylation mediated by HIF-1α.
    PLoS ONE 05/2013; 8(5):e61944. DOI:10.1371/journal.pone.0061944 · 3.23 Impact Factor
Show more