Article

Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia.

Facultad de Bioquímica, Universidad de San Francisco Xavier de Chuquisaca, Sucre, Bolivia.
PLoS Neglected Tropical Diseases (Impact Factor: 4.49). 02/2008; 2(3):e202. DOI: 10.1371/journal.pntd.0000202
Source: PubMed

ABSTRACT For Chagas disease, the most serious infectious disease in the Americas, effective disease control depends on elimination of vectors through spraying with insecticides. Molecular genetic research can help vector control programs by identifying and characterizing vector populations and then developing effective intervention strategies.
The population genetic structure of Triatoma infestans (Hemiptera: Reduviidae), the main vector of Chagas disease in Bolivia, was investigated using a hierarchical sampling strategy. A total of 230 adults and nymphs from 23 localities throughout the department of Chuquisaca in Southern Bolivia were analyzed at ten microsatellite loci. Population structure, estimated using analysis of molecular variance (AMOVA) to estimate F(ST) (infinite alleles model) and R(ST) (stepwise mutation model), was significant between western and eastern regions within Chuquisaca and between insects collected in domestic and peri-domestic habitats. Genetic differentiation at three different hierarchical geographic levels was significant, even in the case of adjacent households within a single locality (R(ST) = 0.14, F(ST) = 0.07). On the largest geographic scale, among five communities up to 100 km apart, R(ST) = 0.12 and F(ST) = 0.06. Cluster analysis combined with assignment tests identified five clusters within the five communities.
Some houses are colonized by insects from several genetic clusters after spraying, whereas other households are colonized predominately by insects from a single cluster. Significant population structure, measured by both R(ST) and F(ST), supports the hypothesis of poor dispersal ability and/or reduced migration of T. infestans. The high degree of genetic structure at small geographic scales, inferences from cluster analysis and assignment tests, and demographic data suggest reinfesting vectors are coming from nearby and from recrudescence (hatching of eggs that were laid before insecticide spraying). Suggestions for using these results in vector control strategies are made.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triatoma dimidiata is currently the main vector of Chagaś disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 09/2013; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The persistence of Triatoma infestans and the continuous transmission of Trypanosoma cruzi in the Inter-Andean Valleys and in the Gran Chaco of Bolivia are of great significance. Coincidentally, it is in these regions the reach of the vector control strategies is limited, and reports of T. infestans resistance to insecticides, including in wild populations, have been issued. This study aims to characterize the susceptibility to deltamethrin of wild and domestic populations of T. infestans from Bolivia, in order to better understand the extent of this relevant problem.Methods Susceptibility to deltamethrin was assessed in nine, wild and domestic, populations of T. infestans from the Gran Chaco and the Inter-Andean Valleys of Bolivia. Serial dilutions of deltamethrin in acetone (0.2 ¿L) were topically applied in first instar nymphs (F1, five days old, fasting, weight 1.2¿±¿0.2 mg). Dose response results were analyzed with PROBIT version 2, determining the lethal doses, slope and resistance ratios (RR). Qualitative tests were also performed.ResultsThree wild T. infestans dark morph samples of Chaco from the Santa Cruz Department were susceptible to deltamethrinwithRR50of <2, and 100% mortality to the diagnostic dose (DD); however, two domestic populations from the same region were less susceptible than the susceptibility reference lineage (RR50 of 4.21 and 5.04 respectively and 93% DD). The domestic population of Villa Montes from the Chaco of the Tarija Department presented high levels of resistance (RR50 of 129.12 and 0% DD). Moreover, the domestic populations from the Valleys of the Cochabamba Department presented resistance (RR50 of 8.49 and 62% DD), the wild populations were less susceptible than SRL and T. infestans dark morph populations (RR50¿<¿5).Conclusion The elimination of T. infestans with pyrethroid insecticides in Brazil, Uruguay, Chile, and its drastic reduction in large parts of Paraguay and Argentina, clearly indicates that pyrethroid resistance was very uncommon in non-Andean regions. The pyrethroid susceptibility of non-Andean T. infestans dark morph population, and the resistance towards it, of Andean T. infestans wild and domestic populations, indicates that the Andean populations from Bolivia are less susceptible.
    Parasites & Vectors 11/2014; 7(1):497. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Disease transmission is difficult to model because most vectors and hosts have different generation times. Chagas disease is such a situation, where insect vectors have 1-2 generations annually and mammalian hosts, including humans, can live for decades. The hemataphagous triatominae vectors (Hemiptera: Reduviidae) of the causative parasite Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) usually feed on sleeping hosts, making vector infestation of houses, peridomestic areas, and wild animal burrows a central factor in transmission. Because of difficulties with different generation times, we developed a model considering the dwelling as the unit of infection, changing the dynamics from an indirect to a direct transmission model. In some regions, vectors only infest houses; in others, they infest corrals; and in some regions, they also infest wild animal burrows. We examined the effect of sylvatic and peridomestic vector populations on household infestation rates. Both sylvatic and peridomestic vectors increase house infestation rates, sylvatic much more than peridomestic, as measured by the reproductive number R0. The efficacy of manipulating parameters in the model to control vector populations was examined. When R0 > 1, the number of infested houses increases. The presence of sylvatic vectors increases R0 by at least an order of magnitude. When there are no sylvatic vectors, spraying rate is the most influential parameter. Spraying rate is relatively unimportant when there are sylvatic vectors; in this case, community size, especially the ratio of houses to sylvatic burrows, is most important. The application of this modeling approach to other parasites and enhancements of the model are discussed.
    Journal of Medical Entomology 07/2013; 50(4):907-15. · 1.82 Impact Factor

Full-text (3 Sources)

Download
57 Downloads
Available from
May 30, 2014