Article

The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes.

Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
Genes & Development (Impact Factor: 12.64). 05/2008; 22(8):1051-68. DOI: 10.1101/gad.1656508
Source: PubMed

ABSTRACT The cellular and molecular mechanisms that underlie species-specific membrane fusion between male and female gametes remain largely unknown. Here, by use of gene discovery methods in the green alga Chlamydomonas, gene disruption in the rodent malaria parasite Plasmodium berghei, and distinctive features of fertilization in both organisms, we report discovery of a mechanism that accounts for a conserved protein required for gamete fusion. A screen for fusion mutants in Chlamydomonas identified a homolog of HAP2, an Arabidopsis sterility gene. Moreover, HAP2 disruption in Plasmodium blocked fertilization and thereby mosquito transmission of malaria. HAP2 localizes at the fusion site of Chlamydomonas minus gametes, yet Chlamydomonas minus and Plasmodium hap2 male gametes retain the ability, using other, species-limited proteins, to form tight prefusion membrane attachments with their respective gamete partners. Membrane dye experiments show that HAP2 is essential for membrane merger. Thus, in two distantly related eukaryotes, species-limited proteins govern access to a conserved protein essential for membrane fusion.

0 Followers
 · 
105 Views
  • The American Society for Cell Biology Annual Meeting; 12/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protozoan Eimeria tenella is a common parasite of chickens, causing avian coccidiosis, a disease of on-going concern to agricultural industries. The high prevalence of E. tenella can be attributed to the resilient oocyst stage, which is transmitted between hosts in the environment. As in related Coccidia, development of the eimerian oocyst appears to be dependent on completion of the parasite's sexual cycle. RNA Seq transcriptome profiling offers insights into the mechanisms governing the biology of E. tenella sexual stages (gametocytes) and the potential to identify targets for blocking parasite transmission. Comparisons between the sequenced transcriptomes of E. tenella gametocytes and two asexual developmental stages, merozoites and sporozoites, revealed upregulated gametocyte transcription of 863 genes. Many of these genes code for proteins involved in coccidian sexual biology, such as oocyst wall biosynthesis and fertilisation, and some of these were characterised in more depth. Thus, macrogametocyte-specific expression and localisation was confirmed for two proteins destined for incorporation into the oocyst wall, as well as for a subtilisin protease and an oxidoreductase. Homologues of an oocyst wall protein and oxidoreductase were found in the related coccidian, Toxoplasma gondii, and shown to be macrogametocyte-specific. In addition, a microgametocyte gamete fusion protein, EtHAP2, was discovered. The need for novel vaccine candidates capable of controlling coccidiosis is rising and this panel of gametocyte targets represents an invaluable resource for development of future strategies to interrupt parasite transmission, not just in Eimeria but in other Coccidia, including Toxoplasma, where transmission blocking is a relatively unexplored strategy.
    BMC Genomics 02/2015; 16(1):94. DOI:10.1186/s12864-015-1298-6 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Nearly every cell in the human body has slender, hair-like structures known as cilia that project outwards from its surface. These structures can sense and respond to light, chemicals and touch, and they are required for normal development. Failure of cilia to form or function in the correct manner can lead to severe diseases—such as kidney disorders, deafness and loss of vision. A major puzzle for researchers who study cilia has been to understand how cells change the composition of these structures as part of their response to a sensory input. Cilia are ancient structures that were present in early single-celled organisms and researchers interested in cilia have often used a single-celled green alga called Chlamydomonas reinhardtii as a model system for their studies. When these algae reproduce sexually, the two types of sex cells sense the presence of each other when their cilia touch and then stick together. This ciliary touching activates signals that are sent into the cells to get them ready to fuse together, much like sperm and egg cells do in animals. Both ciliary touching and signaling depend on a protein called SAG1, a part of which (known as SAG1-C65) is normally found mostly over the surface membrane of C. reinhardtii. Only very small amounts of SAG1-C65 are normally found on cilia; but, when the sex cells' cilia touch, this protein rapidly moves to the end of the cell nearest the cilia via a previously unknown mechanism. SAG1-C65 then becomes much more enriched in the cilia. Cao, Ning, Hernandez-Lara et al. investigated this process and found that SAG1-C65 movement requires a molecular motor called ‘cytoplasmic dynein’. This motor protein typically walks along the inside of cilia to transport other molecules away from the tip and towards the cell membrane. However, Cao, Ning, Hernandez-Lara et al. found that this dynein also carries SAG1-C65 from the membrane of the cells towards the base of the cilia in preparation for it to enter into these structures. As part of an effort to understand the fate of the protein after it entered cilia, Cao, Ning, Hernandez-Lara et al. discovered that the SAG1-C65 disappeared from the structures without returning to the cell membrane. Instead, SAG1-C65 was packaged within tiny bubble-like structures near the tips of cilia and these packages were then shed from cilia into the external environment. This discovery challenges a widely held view that proteins are only removed from cilia by returning to the cell. Future work will be required to understand more of the molecular details of these processes, which are likely to be present in most cells with cilia. DOI: http://dx.doi.org/10.7554/eLife.05242.002
    eLife Sciences 02/2015; 4. DOI:10.7554/eLife.05242 · 8.52 Impact Factor

Preview

Download
1 Download
Available from