Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme

Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
Development (Impact Factor: 6.27). 06/2008; 135(9):1625-34. DOI: 10.1242/dev.015495
Source: PubMed

ABSTRACT The effects of Wnt7b on lung development were examined using a conditional Wnt7b-null mouse. Wnt7b-null lungs are markedly hypoplastic, yet display largely normal patterning and cell differentiation. In contrast to findings in prior hypomorphic Wnt7b models, we find decreased replication of both developing epithelium and mesenchyme, without abnormalities of vascular smooth muscle development. We further demonstrate that Wnt7b signals to neighboring cells to activate both autocrine and paracrine canonical Wnt signaling cascades. In contrast to results from hypomorphic models, we show that Wnt7b modulates several important signaling pathways in the lung. Together, these cascades result in the coordinated proliferation of adjacent epithelial and mesenchymal cells to stimulate organ growth with few alterations in differentiation and patterning.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fibroblast growth factor (FGF) family of signaling ligands contributes significantly to lung development and maintenance in the adult. FGF9 is involved in control of epithelial branching and mesenchymal proliferation and expansion in developing lungs. However, its activity and expression in the normal adult lung and by epithelial and interstitial cells in fibroproliferative diseases like idiopathic pulmonary fibrosis (IPF) are unknown. Tissue samples from normal organ donor human lungs and those of a cohort of patients with mild to severe IPF were sectioned and stained for the immunolocalization of FGF9. In normal lungs, FGF9 was confined to smooth muscle surrounding airways, alveolar ducts and sacs, and blood vessels. In addition to these same sites, lungs of IPF patients expressed FGF9 in a population of myofibroblasts within fibroblastic foci, hypertrophic and hyperplastic epithelium of airways and alveoli, and smooth muscle cells surrounding vessels embedded in thickened interstitium. The results demonstrate that FGF9 protein increased in regions of active cellular hyperplasia, metaplasia, and fibrotic expansion of IPF lungs, and in isolated human lung fibroblasts treated with TGF-β1 and/or overexpressing Wnt7B. The cellular distribution and established biologic activity of FGF9 make it a potentially strong candidate for contributing to the progression of IPF.
    Journal of Histochemistry and Cytochemistry 06/2013; DOI:10.1369/0022155413497366 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal models are of great importance for medical research. They have enabled analysis of the aetiology and pathogenesis of complex congenital malformations and have also led to major advances in the surgical and therapeutic management of these conditions. Animal models allow us to comprehend the morphological and molecular basis of disease and consequently to discover novel approaches for both surgical and medical therapy. The anthracycline antibiotic adriamycin was incidentally found to have teratogenic effects on rats, producing a range of defects remarkably similar to the VACTERL association of congenital anomalies in humans, providing a reproducible animal model of this condition. VACTERL association is a spectrum of birth defects which includes vertebral, anal, cardiovascular, tracheo-oesophageal, renal and limb anomalies. In recent years, adriamycin rodent models of VACTERL have provided valuable insights into the pathogenesis of this complex association, particularly in relation to tracheo-oesophageal malformations. The adriamycin rat model and adriamycin mouse model are now well established in the investigation of the morphology of faulty organogenesis and the regulation of gene expression in tracheo-oesophageal anomalies.
    Molecular syndromology 02/2013; 4(1-2):46-62. DOI:10.1159/000345579
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long-term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound.
    Developmental Biology 11/2010; 347(1):92-108. DOI:10.1016/j.ydbio.2010.08.013 · 3.64 Impact Factor


Available from