Article

Real-time visualization of HIV-1 GAG trafficking in infected macrophages.

Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA.
PLoS Pathogens (Impact Factor: 8.06). 04/2008; 4(3):e1000015. DOI: 10.1371/journal.ppat.1000015
Source: PubMed

ABSTRACT HIV-1 particle production is driven by the Gag precursor protein Pr55(Gag). Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.

0 Bookmarks
 · 
207 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir and mediating neurological disorders. Cell-free HIV-1 infection of macrophages is inefficient, in part due to low plasma membrane expression of viral entry receptors. We find that macrophages selectively capture and engulf HIV-1-infected CD4(+) T cells leading to efficient macrophage infection. Infected T cells, both healthy and dead or dying, were taken up through viral envelope glycoprotein-receptor-independent interactions, implying a mechanism distinct from conventional virological synapse formation. Macrophages infected by this cell-to-cell route were highly permissive for both CCR5-using macrophage-tropic and otherwise weakly macrophage-tropic transmitted/founder viruses but restrictive for nonmacrophage-tropic CXCR4-using virus. These results have implications for establishment of the macrophage reservoir and HIV-1 dissemination in vivo. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell host & microbe. 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A critical aspect of viral replication is the assembly of virus particles, which are subsequently released as progeny virus. While a great deal of attention has been focused on better understanding this phase of the viral life cycle, many aspects of the molecular details remain poorly understood. This is certainly true for retroviruses, including that of the human immunodeficiency virus type 1 (HIV-1; a lentivirus) as well as for human T-cell leukemia virus type 1 (HTLV-1; a deltaretrovirus). This review discusses the retroviral Gag protein and its interactions with itself, the plasma membrane and the role of lipids in targeting Gag to virus assembly sites. Recent progress using sophisticated biophysical approaches to investigate - in a comparative manner - retroviral Gag-Gag and Gag-membrane interactions are discussed. Differences among retroviruses in Gag-Gag and Gag-membrane interactions imply dissimilar molecular aspects of the viral assembly pathway, including the interactions of Gag with lipids at the membrane.
    Frontiers in microbiology. 01/2014; 5:302.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are integral to amphibian immunity against RVs, as well as to the infection strategies of these pathogens. Although CSF-1 was considered to be the principal mediator of macrophage development, the IL-34 cytokine, which shares no sequence identity with CSF-1, is now believed to contribute to vertebrate monopoiesis. However, the respective roles of CSF-1- and IL-34-derived macrophages are still poorly understood. To delineate the contribution of these macrophage populations to amphibian immunity against the RV FV3, we identified the Xenopus laevis IL-34 and transcriptionally and functionally compared this cytokine with the previously identified X. laevis CSF-1. The X. laevis CSF-1 and IL-34 displayed strikingly nonoverlapping developmental and tissue-specific gene-expression patterns. Furthermore, only CSF-1 but not IL-34 was up-regulated in the kidneys of FV3-challenged tadpoles. Intriguingly, recombinant forms of these cytokines (rXlCSF-1, rXlIL-34) elicited morphologically distinct tadpole macrophages, and whereas rXlCSF-1 pretreatment decreased the survival of FV3-infected tadpoles, rXlIL-34 administration significantly prolonged FV3-challenged animal survival. Compared with rXlIL-34-elicited macrophages, macrophages derived by rXlCSF-1 were more phagocytic but also significantly more susceptible to in vitro FV3 infections. By contrast, rXlIL-34-derived macrophages exhibited significantly greater in vitro antiranaviral activity and displayed substantially more robust gene expression of the NADPH oxidase components (p67(phox), gp91(phox)) and type I IFN. Moreover, FV3-challenged, rXlIL-34-derived macrophages exhibited several orders of magnitude greater up-regulation of the type I IFN gene expression. This marks the first report of the disparate roles of CSF-1 and IL-34 in vertebrate antiviral immunity.
    Journal of Leukocyte Biology 09/2014; · 4.30 Impact Factor

Full-text (2 Sources)

Download
86 Downloads
Available from
May 30, 2014