Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues.

Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Science (Impact Factor: 31.48). 04/2008; 319(5871):1842-5. DOI: 10.1126/science.1152837
Source: PubMed

ABSTRACT Learning to associate sensory cues with threats is critical for minimizing aversive experience. The ecological benefit of associative learning relies on accurate perception of predictive cues, but how aversive learning enhances perceptual acuity of sensory signals, particularly in humans, is unclear. We combined multivariate functional magnetic resonance imaging with olfactory psychophysics to show that initially indistinguishable odor enantiomers (mirror-image molecules) become discriminable after aversive conditioning, paralleling the spatial divergence of ensemble activity patterns in primary olfactory (piriform) cortex. Our findings indicate that aversive learning induces piriform plasticity with corresponding gains in odor enantiomer discrimination, underscoring the capacity of fear conditioning to update perceptual representation of predictive cues, over and above its well-recognized role in the acquisition of conditioned responses. That completely indiscriminable sensations can be transformed into discriminable percepts further accentuates the potency of associative learning to enhance sensory cue perception and support adaptive behavior.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Given that odors enhance the retrieval of autobiographical memories, induce physiological arousal, and trigger trauma-related flashbacks, it is reasonable to hypothesize that odors play a significant role in the pathophysiology of posttraumatic stress disorder (PTSD). For these reasons, this preliminary study sought to examine self-reported, odor-elicited distress in PTSD. Combat veterans with (N=30) and without (N=22) PTSD and healthy controls (HC: N=21), completed an olfactory questionnaire that provided information on the hedonic valence of odors as well as their ability to elicit distress or relaxation. Two main findings were revealed: Compared to HC, CV+PTSD, but not CV-PTSD, reported a higher prevalence of distress to a limited number of select odors that included fuel (p=.004), blood (p=.02), gunpowder (p=.03), and burning hair (p=.02). In contrast to this increased sensitivity, a blunting effect was reported by both groups of veterans compared to HC that revealed lower rates of distress and relaxation in response to negative hedonic odors (p=.03) and positive hedonic odors (p<.001), respectively. The study is limited by its use of retrospective survey methods, whereas future investigations would benefit from laboratory measures taken prior, during, and after deployment. The present findings suggest a complex role of olfaction in the biological functions of threat detection. Several theoretical models are discussed. One possible explanation for increased sensitivity to select odors with decreased sensitivity to other odors is the co-occurrence of attentional bias toward threat odors with selective ignoring of distractor odors. Working together, these processes may optimize survival. Copyright © 2015 Elsevier B.V. All rights reserved.
    Journal of Affective Disorders 03/2015; 179:23-30. DOI:10.1016/j.jad.2015.03.026 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent neuropsychological theories emphasize the influence of maladaptive learning and memory processes on pain perception. However, the precise relationship between these processes as well as the underlying mechanisms remain poorly understood; especially the role of perceptual discrimination and its modulation by associative fear learning has received little attention so far. Experimental work with exteroceptive stimuli consistently points to effects of fear learning on perceptual discrimination acuity. In addition, clinical observations have revealed that in individuals with chronic pain perceptual discrimination is impaired, and that tactile discrimination training reduces pain. Based on these findings, we present a theoretical model of which the central tenet is that associative fear learning contributes to the development of chronic pain through impaired interoceptive and proprioceptive discrimination acuity.
    Neuroscience & Biobehavioral Reviews 01/2015; in press. DOI:10.1016/j.neubiorev.2015.01.009 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most real-world odors are complex mixtures of distinct molecular components. Olfactory systems can adopt different strategies to contend with this stimulus complexity. In elemental processing, odor perception is derived from the sum of its parts; in configural processing, the parts are integrated into unique perceptual wholes. Here we used gas-chromatography/mass-spectrometry techniques to deconstruct a complex natural food smell and assess whether olfactory salience is confined to the whole odor or is also embodied in its parts. By implementing an fMRI sensory-specific satiety paradigm, we identified reward-based changes in orbitofrontal cortex (OFC) for the whole odor and for a small subset of components. Moreover, component-specific changes in OFC-amygdala connectivity correlated with perceived value. Our findings imply that the human brain has direct access to the elemental content of a natural food odor, and highlight the dynamic capacity of the olfactory system to engage both object-level and component-level mechanisms to subserve behavior. Copyright © 2014 Elsevier Inc. All rights reserved.
    Neuron 11/2014; 84(4):857-69. DOI:10.1016/j.neuron.2014.10.012 · 15.98 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014