Article

Complexity of Hsp90 in organelle targeting.

Laboratory of Molecular Biology, Agricultural Biotechnology Department, Agricultural University of Athens, Athens, Greece.
Plant Molecular Biology (Impact Factor: 4.07). 08/2008; 67(4):323-34. DOI: 10.1007/s11103-008-9322-8
Source: PubMed

ABSTRACT Heat shock protein 90 (Hsp90) is an abundant and highly conserved molecular chaperone. In Arabidopsis, the Hsp90 gene family consists of seven members. Here, we report that the AtHsp90-6 gene gives rise to two mRNA populations, termed AtHsp90-6L and AtHsp90-6S due to alternative initiation of transcription. The AtHsp90-6L and AtHsp90-6S transcription start sites are located 228 nucleotides upstream and 124 nucleotides downstream of the annotated translation start site, respectively. Both transcripts are detected under normal or heat-shock conditions. The inducibility of AtHsp90-6 mRNAs by heat shock implies a potential role of both isoforms in stress management. Stable transformation experiments with fusion constructs between the N-terminal part of each AtHsp90-6 isoform and green fluorescent protein indicated import of both fusion proteins into mitochondria. In planta investigation confirmed that fusion of the AtHsp90-5 N-terminus to green fluorescent protein (GFP) did result in specific chloroplastic localization. The mechanisms of regulation for mitochondria- and plastid-localized chaperone-encoding genes are not well understood. Future work is needed to address the possible roles of harsh environmental conditions and developmental processes on fine-tuning and compartmentalization of the AtHsp90-6L, AtHsp90-6S, and AtHsp90-5 proteins in Arabidopsis.

0 Bookmarks
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and Aims: Heat shock protein 90 (Hsp90) proteins constitute an important gene family of molecular chaperons. High-temperature stress, which is often combined with drought stress, may exert major constraints to grapevine growth and development. The aim of this study was to characterise the Vitis vinifera Hsp90 gene family.Methods and Results: Using the complete grapevine genome sequences, four cytoplasmic and three organelle-specific V. vinifera Hsp90 (VvHsp90) proteins were identified. Phylogenetic analysis revealed that they share high sequence similarity with their Arabidopsis counterparts, while the cytosolic isoforms are clustered into two distinct groups (VvHsp90.1 and VvHsp90.2). Transcriptional analysis showed that a representative gene from the first group (VvHsp90.1a), in contrast to VvHsp90.2a, is induced by heat shock in all vegetative tissues/organs tested. Interestingly, it was also expressed in tendrils in the absence of stress. The severity and duration of heat stress influenced in a complex manner the expression profile of VvHsp90.1a, while the other VvHsp90s tested were rather constitutively regulated. However, the endoplasmic reticulum-specific VvHsp90.7 was mildly and transiently induced by a relatively prolonged heat stress. Combined drought with heat stress resulted in a delay in VvHsp90.1a induction.Conclusions: Gene structure organisation and expression characteristics of VvHsp90s resemble those of their Arabidopsis orthologs, although species-specific differences also exist. Differential regulation of genes suggests functional diversification among isoforms.Significance of the Study: This is the first report on the characterisation of Hsp90s in grapevine. The present study contributes to a deeper understanding of the complex molecular responses of grapevine to stress.
    Australian Journal of Grape and Wine Research 02/2012; 18(1). DOI:10.1111/j.1755-0238.2011.00166.x · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock protein 90 (HSP90), a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90) by combining homology cloning with rapid amplification of cDNA ends (RACE). Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA) in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5-45°C) for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰) was almost fourfold of that at 25 in salinity (‰) for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes.
    03/2014; 2014:487050. DOI:10.1155/2014/487050
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis of secondary metabolites, and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago.
    Frontiers in Plant Science 02/2014; 5:21. DOI:10.3389/fpls.2014.00021 · 3.64 Impact Factor
    This article is viewable in ResearchGate's enriched format

Full-text

Download
9 Downloads
Available from
Sep 9, 2014