Silencing genes by RNA interference in the protozoan parasite Entamoeba histolytica.

Unité de Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2008; 442:113-28. DOI: 10.1007/978-1-59745-191-8_9
Source: PubMed

ABSTRACT Experimental procedures using the RNA interference (RNAi) approach have recently emerged as a powerful tool for gene silencing in eukaryotic microbes for which gene replacement techniques have not yet been developed. Our group has recently explored RNAi to knock down gene-specific expression in the protozoan parasite Entamoeba histolytica, through delivery of small interfering RNA (siRNA) oligonucleotides by the soaking approach. Standardized conditions for the soaking of E. histolytica trophozoites with siRNAs result in highly specific and significant silencing of parasite cognate genes. Real-time PCR analysis indicates that a 16-hour treatment with siRNAs usually results in half-extinction of target messenger RNA. Furthermore, Western blot analysis of trophozoite crude extracts with the use of specific antibodies shows a similar reduction of cognate protein levels after siRNA treatment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A plethora of information has been gained by sequencing the genome of the human parasite Entamoeba histolytica, however a lack of robust genetic tools hampers experimental elucidation of gene functions. We adapted the destabilization domain (DD) approach for modulation of protein levels in E. histolytica using the destabilization domains of FK506 binding protein (ddFKBP) and dihydrofolate reductase (ddDHFR), respectively. In our studies, the ddFKBP appears to be more tightly regulated than ddDHFR, with minimal detectable protein in trophozoites in the absence of the stabilizing compound. The on- and off-rate kinetics for ddFKBP were rapid, with stabilization and degradation within 3 h of addition or removal of stabilizing compound, respectively. The kinetics for ddDHFR was different, with rapid stabilization (within 3 h of stabilizing compound being added) but much slower degradation (protein not destabilized until 24 h after compound removal). Furthermore, we demonstrated that for the ddFKBP, the standard stabilizing compound Shield-1 could be effectively replaced by two cheaper alternatives (rapamycin and FK506), indicating that the more cost-effective alternatives are viable options for use with E. histolytica. Thus, the DD approach represents a powerful method to study protein functions in E. histolytica and adds to the catalog of genetic tools that could be used to study this important human pathogen.
    International Journal for Parasitology 06/2014; 44(10). DOI:10.1016/j.ijpara.2014.05.002 · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Encystment is an essential process in the biological cycle of the human parasite Entamoeba histolytica. In the present study, we evaluated the participation of E. histolytica Gln6Pi in the formation of amoeba cyst-like structures by RNA interference assay. Amoeba trophozoites transfected with two Gln6Pi siRNAs reduced the expression of the enzyme in 85%, which was confirmed by western blot using an anti-Gln6Pi antibody. The E. histolytica Gln6Pi knockdown with the mix of both siRNAs resulted in the loss of its capacity to form cyst-like structures (CLSs) and develop a chitin wall under hydrogen peroxide treatment, as evidenced by absence of both resistance to detergent treatment and calcofluor staining. Thus, only 5% of treated trophozoites were converted to CLS, from which only 15% were calcofluor stained. These results represent an advance in the understanding of chitin biosynthesis in E. histolytica and provide insight into the encystment process in this parasite, which could allow for the developing of new control strategies for this parasite.
    01/2013; 2013:758341. DOI:10.1155/2013/758341
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parasitic protists are a major cause of diarrhoeal illnesses in humans globally. Collectively, enteric pathogens exceed all other forms of infectious disease, in terms of their estimated global prevalence and socioeconomic impact. They have a disproportionately high impact on children in impoverished communities, leading to acute (diarrhoea, vomiting, dehydration and death) and chronic disease (malabsorption, malnutrition, physical and cognitive stunting and predisposition to chronic, non-communicable disease) consequences. However, historically, investment in research and disease control measures has been disproportionately poor, leading to their current classification as neglected pathogens. A sound understanding of their biology is essential in underpinning detection, treatment and control efforts. One major tool in rapidly improving our knowledge of these parasites is the use of biological systems, including 'omic' technologies. In recent years, these tools have shown significant success when applied to enteric protists. This review summarizes much of this knowledge and highlights the significant remaining knowledge gaps. A major focus of the present review was to provide a perspective on a way forward to address these gaps using advanced biotechnologies.
    International journal for parasitology 07/2013; DOI:10.1016/j.ijpara.2013.06.005 · 3.40 Impact Factor