Article

Targeted Disruption of the PDZK1 Gene in Mice Causes Tissue-specific Depletion of the High Density Lipoprotein Receptor Scavenger Receptor Class B Type I and Altered Lipoprotein Metabolism

Pontifical Catholic University of Chile, CiudadSantiago, Santiago Metropolitan, Chile
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2004; 278(52):52820-5. DOI: 10.1074/jbc.M310482200
Source: PubMed

ABSTRACT PDZK1, a multi-PDZ domain containing adaptor protein, interacts with various membrane proteins, including the high density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI). Here we show that PDZK1 controls in a tissue-specific and post-transcriptional fashion the expression of SR-BI in vivo. SR-BI protein expression in PDZK1 knock-out (KO) mice was reduced by 95% in the liver, 50% in the proximal intestine, and not affected in steroidogenic organs (adrenal, ovary, and testis). Thus, PDZK1 joins a growing list of adaptors that control tissue-specific activity of cell surface receptors. Hepatic expression of SR-BII, a minor splice variant with an alternative C-terminal cytoplasmic domain, was not affected in PDZK1 KO mice, suggesting that binding of PDZK1 to SR-BI is required for controlling hepatic SR-BI expression. The loss of hepatic SR-BI was the likely cause of the elevation in plasma total and HDL cholesterol and the increase in HDL particle size in PDZK1 KO mice, phenotypes similar to those observed in SR-BI KO mice. PDZK1 KO mice differed from SR-BI KO mice in that the ratio of unesterified to total plasma cholesterol was normal, females were fertile, and cholesteryl ester stores in steroidogenic organs were essentially unaffected. These differences may be due to nearly normal extrahepatic expression of SR-BI in PDZK1 KO mice. The PDZK1-dependent regulation of hepatic SR-BI and, thus, lipoprotein metabolism supports the proposal that this adaptor may represent a new target for therapeutic intervention in cardiovascular disease.

0 Followers
 · 
45 Views
  • Source
    Dyslipidemia - From Prevention to Treatment, 02/2012; , ISBN: 978-953-307-904-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SR-BI is a cell surface HDL receptor that mediates selective uptake of the lipid cargo of HDL, an important process in hepatocytes, driving reverse cholesterol transport from cells in the artery wall. To facilitate examination of factors that modulate SR-BI activity in hepatocytes, we have generated fluorescent protein-tagged versions of SR-BI that allow for facile monitoring of SR-BI protein levels and distribution in transfected cells. We show that deletion of the C-terminal cytosolic tail does not affect the distribution of SR-BI in HepG2 cells, nor is the C-terminal cytosolic tail required for SR-BI-mediated uptake of HDL lipids. We also demonstrate that the phorbol ester, PMA, increased, while protein kinase C inhibitors reduced SR-BI-mediated HDL lipid uptake in HepG2 cells. These data suggest that protein kinase C may modulate selective uptake of HDL lipids including cholesterol in hepatocytes, thereby influencing hepatic HDL cholesterol clearance and reverse cholesterol transport.
    Cholesterol 01/2011; 2011(2090-1283):687939. DOI:10.1155/2011/687939
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PDZK1 and ezrin, radixin, moesin binding phosphoprotein 50 kDa (EBP50) are postsynaptic density 95/disc-large/zona occludens (PDZ)-domain-containing scaffolding proteins found in the apical microvilli of polarized epithelial cells. Binary interactions have been shown between the tail of PDZK1 and the PDZ domains of EBP50, as well as between EBP50 and the membrane-cytoskeletal linking protein ezrin. Here, we show that these molecules form a regulated ternary complex in vitro and in vivo. Complex formation is cooperative because ezrin positively influences the PDZK1/EBP50 interaction. Moreover, the interaction of PDZK1 with EBP50 is enhanced by the occupancy of EBP50's adjacent PDZ domain. The complex is further regulated by location, because PDZK1 shuttles from the nucleus in low confluence cells to microvilli in high confluence cells, and this regulates the formation of the PDZK1/EBP50/ezrin complex in vivo. Knockdown of EBP50 decreases the presence of microvilli, a phenotype that can be rescued by EBP50 re-expression or expression of a PDZK1 chimera that is directly targeted to ezrin. Thus, when appropriately located, PDZK1 can provide a function necessary for microvilli formation normally provided by EBP50. By entering into the ternary complex, PDZK1 can both enhance the scaffolding at the apical membrane as well as augment EBP50's role in microvilli formation.
    Molecular biology of the cell 03/2010; 21(9):1519-29. DOI:10.1091/mbc.E10-01-0008 · 5.98 Impact Factor