Therapeutic cloning in individual parkinsonian mice.

Department of Neurosurgery, Sloan-Kettering Institute, 1275 York Ave, New York, New York 10065, USA.
Nature medicine (Impact Factor: 27.14). 05/2008; 14(4):379-81. DOI: 10.1038/nm1732
Source: PubMed

ABSTRACT Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. 'Therapeutic cloning' is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 2012 Nobel Prize in Medicine or Physiology recognizes the architects of two of the great paradigm-shifting discoveries of the last half-century of biology. In experiments performed nearly 50 years apart, Gurdon and Yamanaka made feasible the reawakening of pluripotency inherent in all cells and challenged forever our notions of cellular identity.
    Cell 12/2012; 151(6):1151-4. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There has been considerable progress in obtaining engraftable embryonic stem (ES) cell-derived midbrain dopamine neurons for cell replacement therapy in models of Parkinson's disease; however, limited integration and striatal reinnervation of ES-derived grafts remain a major challenge for future clinical translation. In this paper, we show that enhanced expression of polysialic acid results in improved graft efficiency in correcting behavioral deficits in Parkinsonian mice. This result is accompanied by two potentially relevant cellular changes: greater survival of transplanted ES-derived dopamine neurons and robust sprouting of tyrosine hydroxylase-positive processes into host tissue. Because the procedures used to enhance polysialic acid are easily translated to other cell types and species, this approach may represent a general strategy to improve graft integration in cell-based therapies.
    STEM CELLS TRANSLATIONAL MEDICINE 12/2013; · 3.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural transplantation is a promising strategy for restoring dopaminergic dysfunction and modifying disease progression in Parkinson's disease. Human embryonic stem cells (hESC) are a potential resource in this regard because of their ability to provide a virtually limitless supply of homogenous dopaminergic progenitors and neurons of appropriate lineage. The recent advances in developing robust cell culture protocols for directed differentiation of hESCs to near pure populations of ventral mesencephalic (A9-type) dopaminergic neurons has heightened the prospects for PD cell therapy. Here, we focus our review on current state-of-the-art techniques for harnessing hESC-based strategies towards development of a stem cell therapeutic for PD. Importantly, we also briefly describe a novel genetic-programming approach that may address many of the key challenges that remain in the field and that may hasten clinical translation. J. Comp. Neurol., 2014. © 2014 Wiley Periodicals, Inc.
    The Journal of Comparative Neurology 04/2014; · 3.66 Impact Factor


Available from