Plasmid mediated antibiotic resistance in marine bacteria.

CAS in Marine Biology, Annamalai University, Parangipettai-608 502, India.
Journal of Environmental Biology (Impact Factor: 0.68). 08/2007; 28(3):617-21.
Source: PubMed

ABSTRACT This research work was conducted in Uppanar estuary to ascertain the role of plasmids in the antibiotic resistance of bacteria. Water and sediment samples were collected for a period of three months. When tested against 20 antibiotics 22 MAR strains were isolated from the samples, which were found resistant to 5-13 antibiotics. They belong to 7 genera and 10 species. Gram-negative bacteria namely Neisseria mucosa, N. sicca, Branhamella catarrhalis, Klebsiella ozaenae, Citrobacterintermedius, Pseudomonas fluorescens and Enterobacter aerogenes were isolated. Gram-positive bacteria were of Bacillus subtilis, B. megaterium and Micrococcus luteus. When plasmid curing was done using acredine orange, the resistance against penicillin-G, ampicillin, tetracycline, amoxycillin, kanamycin, and chloramphenicol were totally lost in all strains, which confirmed the role of plasmid in these strains against antibiotics. Ten strains belong to different species were selected for the plasmid isolation and electrophoresis was done. Presence of plasmids in all strains was confirmed and the molecular weight was in the range of 2850 to 3170 bp. The study revealed that MAR strains are common in Uppanar estuary and they are plasmid mediated. This environment is seemed to be deteriorating at an alarming rate.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study was to evaluate bacterial antibiotic resistance in seawater from four beaches in Algiers. The most significant resistance rates were observed for amoxicillin and ticarcillin, whereas they were relatively low for ceftazidime, cefotaxime and imipenem. According to sampling sites, the highest resistance rates were recorded for 2 sites subjected to chemical and microbiological inputs (amoxicillin, 43% and 52%; ticarcillin, 19.6% and 47.7%), and for 2 sites relatively preserved from anthropogenic influence, resistance rates were lowest (amoxicillin, 1.5% and 16%; ticarcillin, 0.8% and 2.6%). Thirty-four bacteria resistant to imipenem (n=14) or cefotaxime (n=20) were identified as Pseudomonas aeruginosa (n=15), Pseudomonas fluorescens (7), Stenotrophomonas maltophilia (4), Burkholderia cepacia (2), Bordetella sp. (1), Pantoea sp. (1), Acinetobacter baumannii (1), Chryseomonas luteola (1), Ochrobactrum anthropi (1) and Escherichia coli (1). Screening for extended spectrum β-lactamase showed the presence of CTX-M-15 β-lactamase in the E. coli isolate, and the encoding gene was transferable in association with the IncI1 plasmid of about 50 kbp. Insertion sequence ISEcp1B was located upstream of the CTX-M-15 gene. This work showed a significant level of resistance to antibiotics, mainly among environmental saprophytic bacteria. Transmissible CTX-M-15 was detected in E. coli; this may mean that contamination of the environment by resistant bacteria may cause the spread of resistance genes.
    Microbes and Environments 11/2011; 27(1):80-6. · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Susceptibility patterns of 12 different antibiotics were investigated against rhizospheric bacteria isolated from Phragmites australis from three different zones i.e. upper (0-5 cm), middle (5-10 cm), lower (10-15 cm) in constructed wetland system with and without distillery effluent. The major pollutants of distillery effluent were phenols, sulphide, heavy metals, and higher levels of biological oxygen demand (BOD), chemical oxygen demand (COD) etc. The antibiotic resistance properties of bacteria were correlated with the heavy metal tolerance (one of distillery pollutant). Twenty-two species from contaminated and seventeen species from non-contaminated site were tested by agar disc-diffusion method. The results revealed that more than 63% of total isolates were resistance towards one or more antibiotics tested from all the three different zones of contaminated sites. The multiple-drug resistance property was shown by total 8 isolates from effluent contaminated region out of which 3 isolates were from upper zone, 3 isolates from middle zone and 2 isolates were from lower zone. Results indicated that isolates from contaminated rhizosphere were found more resistant to antibiotics than isolates from non-contaminated rhizosphere. Further this study produces evidence suggesting that tolerance to antibiotics was acquired by isolates for the adaptation and detoxification of all the pollutants present in the effluent at contaminated site. This consequently facilitated the phytoremediation of effluent, which emerges the tolerance and increases resistance to antibiotics.
    Journal of Environmental Biology 02/2008; 29(1):117-24. · 0.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vibrio-like bacteria (VLO) were isolated from the seawater and sand of marine recreation beach located on the southern coast of the Baltic Sea and their antibiotic resistance was studied. According to susceptibility test, planktonic, and benthic VLO were the most resistant to β-lactam (ampicillin and penicillin) and lincosamide (clindamycin) antibiotics, while the most susceptible to tetracycline and aminoglycosides (gentamycin). Moreover the results showed that Vibrio-like bacteria inhabiting sand were more antibiotic-resistant than those isolated from seawater. In general, there was no difference in antibiotic resistance between VLO isolated from the surface and subsurface sand layers. More than 90% of planktonic and benthic Vibrio-like bacteria showed multiple antibiotic resistance.
    Hydrobiologia 702(1). · 1.99 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014