Article

Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis.

Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-08059, USA.
Nature Reviews Cancer (Impact Factor: 29.54). 06/2008; 8(5):377-86. DOI: 10.1038/nrc2371
Source: PubMed

ABSTRACT The causes of metastasis remain elusive despite vast information on cancer cells. We posit that cancer cell fusion with macrophages or other migratory bone marrow-derived cells (BMDCs) provides an explanation. BMDC-tumour hybrids have been detected in numerous animal models and recently in human cancer. Molecular studies indicate that gene expression in such hybrids reflects a metastatic phenotype. Should BMDC-tumour fusion be found to underlie invasion and metastasis in human cancer, new approaches for therapy would surely follow.

0 Bookmarks
 · 
207 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main function of gastric stem cells is to maintain the integrity of the gastrointestinal epithelium and replenish all the mature cell lineages. In order to accomplish this, gastric stem cells proliferate and self-renew, giving rise to transient amplifying cells which replace the constantly renewing epithelium, especially after injury induced by long-term inflammation. Gastric cancer (GC) remains the fourth most common cancer and the second leading cause of death for cancer in the world. The most accepted model of gastric carcinogenesis provides a multifactorial and multistep pathogenesis, involving a number of initiators and other continuator agents. Helicobacter pylori infection is recognized as a necessary but insufficient cause of GC. Recent advances in gastric stem cell biology point out to two hypotheses. In the first, it is postulated that resident stem cells may, in a chronically inflamed environment, as in the case of Helicobacter pylori-induced gastritis, accumulate over time a series of genetic and epigenetic changes that lead to the emergence of GC stem cells. Alternatively, the setting of chronic inflammatory stress may lead to loss of the indigenous gastric stem cells from their niches, followed by recruitment and engraftment of bone marrow derived stem cells (BMDCs) into the gastric epithelium. In the mouse model, increasing evidence supports the hypothesis that BMDCs are important cellular source of Helicobacter-induced GC. This review highlights data and hypotheses about GC as a model of stem-cell disease.
    Panminerva medica 12/2014; 56(4):289-300. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A common view is that an accidental increase in ploidy contributes to the evolution of neoplastic cells primarily by decreasing the fidelity of mitosis with extra chromosomes and centrosomes. This view implies that how neoplastic cells become polyploid is irrelevant, as it has been widely assumed. If this assumption is correct, then the oncogenic contribution of the pathways to polyploidy and thus their potential as targets for cancer prevention is determined by their incidence in the body. A lesson from plant evolution, in which an accidental increase in ploidy has a prevalent role, suggests that this assumption needs to be reconsidered.
    Cell cycle (Georgetown, Tex.) 08/2014; 13(15):2323-9. DOI:10.4161/cc.29704 · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main function of gastric stem cells is to maintain the integrity of the gastrointestinal epithelium and replenish all the mature cell lineages. In order to accomplish this, gastric stem cells proliferate and self-renew, giving rise to transient amplifying cells which replace the constantly renewing epithelium, especially after injury induced by long-term inflammation. Gastric cancer (GC) remains the fourth most common cancer and the second leading cause of death for cancer in the world. The most accepted model of gastric carcinogenesis provides a multifactorial and multistep pathogenesis, involving a number of initiators and other continuator agents. Helicobacter pylori infection is recognized as a necessary but insufficient cause of GC. Recent advances in gastric stem cell biology point out to two hypotheses. In the first, it is postulated that resident stem cells may, in a chronically inflamed environment, as in the case of Helicobacter pylori-induced gastritis, accumulate over time a series of genetic and epigenetic changes that lead to the emergence of GC stem cells. Alternatively, the setting of chronic inflammatory stress may lead to loss of the indigenous gastric stem cells from their niches, followed by recruitment and engraftment of bone marrow derived stem cells (BMDCs) into the gastric epithelium. In the mouse model, increasing evidence supports the hypothesis that BMDCs are important cellular source of Helicobacter-induced GC. This review highlights data and hypotheses about GC as a model of stem-cell disease.
    Panminerva medica 12/2014; 56(4):289-300. · 2.28 Impact Factor

Full-text

Download
41 Downloads
Available from
Jun 10, 2014