Killing cancer cells by targeted drug-carrying phage nanomedicines

Department of Molecular Microbiology and Biotechnology, The George S, Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel.
BMC Biotechnology (Impact Factor: 2.59). 02/2008; 8:37. DOI: 10.1186/1472-6750-8-37
Source: PubMed

ABSTRACT Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs.
We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs.
The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Historically filamentous bacteriophage have been known to be the workhorse of phage display due to their ability to link genotype to phenotype. More recently, the filamentous phage scaffold has proven to be powerful outside the realm of phage display technology in fields such as molecular imaging, cancer research and materials, and vaccine development. The ability of the virion to serve as a platform for a variety of applications heavily relies on the functionalization of the phage coat proteins with a wide variety of functionalities. Genetic modification of the coat proteins has been the most widely used strategy for functionalizing the virion; however, complementary chemical modification strategies can help to diversify the range of materials that can be developed. This review emphasizes the recent advances that have been made in the chemical modification of filamentous phage as well as some of the challenges that are involved in functionalizing the virion.
    Frontiers in Microbiology 12/2014; 5:734. DOI:10.3389/fmicb.2014.00734 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer therapy by systemic administration of anticancer drugs, besides the effectiveness shown on cancer cells, demonstrated the side effects and cytotoxicity on normal cells. The targeted drug-carrying nanoparticles may decrease the required drug concentration at the site and the distribution of drugs to normal tissues. Overexpression of major histocompatibility complex class I chain-related A (MICA) in cancer is useful as a targeted molecule for the delivery of doxorubicin to MICA-expressing cell lines. The application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC) chemistry was employed to conjugate the major coat protein of bacteriophages carrying anti-MICA and doxorubicin in a mildly acid condition. Doxorubicin (Dox) on phages was determined by double fluorescence of phage particles stained by M13-fluorescein isothiocyanate (FITC) and drug autofluorescence by flow cytometry. The ability of anti-MICA on phages to bind MICA after doxorubicin conjugation was evaluated by indirect enzyme-linked immunosorbent assay. One cervical cancer and four cholangiocarcinoma cell lines expressing MICA were used as models to evaluate targeting activity by cell cytotoxicity test. Flow cytometry and indirect enzyme-linked immunosorbent assay demonstrated that most of the phages (82%) could be conjugated with doxorubicin, and the Dox-carrying phage-displaying anti-MICA (Dox-phage) remained the binding activity against MICA. Dox-phage was more efficient than free drugs in killing all the cell lines tested. The half maximal inhibitory concentration (IC50) values of Dox-phage were lower than those of free drugs at approximately 1.6-6 times depending on MICA expressions and the cell lines tested. Evidently, the application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide chemistry is effective to conjugate doxorubicin and major coat protein of bacteriophages without destroying binding activity of MICA antibodies. Dox-carrying bacteriophages targeting MICA have been successfully developed and may enable a broad range of applications in cancer-targeting chemotherapy.
    OncoTargets and Therapy 01/2014; 7:2183-95. DOI:10.2147/OTT.S69315 · 1.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For early detection of many diseases, it is critical to be able to diagnose small amounts of biomarkers in blood or serum. One of the most widely used sensing assays is the enzyme-linked immunosorbent assay (ELISA), which typically uses detection monoclonal antibodies conjugated to enzymes to produce colorimetric signals. To increase the overall sensitivities of these sensors, we demonstrate the use of a dually modified version of filamentous bacteriophage Fd that produces significantly higher colorimetric signals in ELISAs than what can be achieved using antibodies alone. Because only a few proteins at the tip of the micron-long bacteriophage are involved in antigen binding, the approximately 4000 other coat proteins can be augmented—by either chemical functionalization or genetic engineering—with hundreds to thousands of functional groups. In this article, we demonstrate the use of bacteriophage that bear a large genomic fusion that allows them to bind specific antibodies on coat protein 3 (p3) and multiple biotin groups on coat protein 8 (p8) to bind to avidin-conjugated enzymes. In direct ELISAs, the anti-rTNFα (recombinant human tumor necrosis factor alpha)-conjugated bacteriophage show approximately 3- to 4-fold gains in signal over that of anti-rTNFα, demonstrating their use as a platform for highly sensitive protein detection.
    Analytical Biochemistry 10/2014; 470. DOI:10.1016/j.ab.2014.10.006 · 2.31 Impact Factor

Full-text (3 Sources)

Available from
May 29, 2014