Article

Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease.

The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
NeuroImage (Impact Factor: 6.13). 07/2008; 41(2):243-51. DOI: 10.1016/j.neuroimage.2008.02.019
Source: PubMed

ABSTRACT A recent study found differences in localised regions of the cortex between the YAC128 mouse model of Huntington's Disease (HD) and wild-type mice. There are, however, few tools to automatically examine shape differences in the cortices of mice. This paper describes an algorithm for automatically measuring cortical thickness across the entire cortex from MRI of fixed mouse brain specimens. An analysis of the variance of the method showed that, on average, a 50 microm (0.05 mm) localised difference in cortical thickness can be measured using MR scans. Applying these methods to 8-month-old YAC128 mouse model mice representing an early stage of HD, we found an increase in cortical thickness in the sensorimotor cortex, and also revealed regions wherein decreasing striatal volume correlated with increasing cortical thickness, indicating a potential compensatory response.

2 Bookmarks
 · 
184 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The healthy adult brain demonstrates robust learning-induced neuroanatomical plasticity. While altered neuroanatomical plasticity is suspected to be a factor mitigating the progressive cognitive decline in Alzheimer's disease (AD), it is not known to what extent this plasticity is affected by AD. We evaluated whether spatial learning and memory-induced neuroanatomical plasticity are diminished in an adult mouse model of AD (APP mice) featuring amyloid beta-driven cognitive and cerebrovascular dysfunction. We also evaluated the effect of early, long-term pioglitazone-treatment on functional hyperemia, spatial learning and memory, and associated neuroanatomical plasticity. Using high-resolution post-mortem MRI and deformation-based morphometry, we demonstrate spatial learning and memory-induced focal volume increase in the hippocampus of wild-type mice, an effect that was severely attenuated in APP mice, consistent with their unsuccessful performance in the spatial Morris water maze. These findings implicate impaired neuroanatomical plasticity as an important contributing factor to cognitive deficits in the APP mouse model of AD. Pioglitazone-treatment in APP mice completely rescued functional hyperemia and exerted beneficial effects on spatial learning and memory-recall, but it did not improve hippocampal plasticity.
    NeuroImage. Clinical. 01/2013; 3:290-300.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework.
    PLoS ONE 01/2014; 9(1):e86576. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The size and extent of folding of the mammalian cerebral cortex are important factors that influence a species' cognitive abilities and sensorimotor skills. Studies in various animal models and in humans have provided insight into the mechanisms that regulate cortical growth and folding. Both protein-coding genes and microRNAs control cortical size, and recent progress in characterizing basal progenitor cells and the genes that regulate their proliferation has contributed to our understanding of cortical folding. Neurological disorders linked to disruptions in cortical growth and folding have been associated with novel neurogenetic mechanisms and aberrant signalling pathways, and these findings have changed concepts of brain evolution and may lead to new medical treatments for certain disorders.
    Nature Reviews Neuroscience 03/2014; 15(4):217-32. · 31.38 Impact Factor

Full-text (2 Sources)

Download
60 Downloads
Available from
May 19, 2014