An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds.

Department of Molecular Biology, Umeå University, Umeå, Sweden.
PLoS Pathogens (Impact Factor: 8.14). 03/2008; 4(2):e1000009. DOI: 10.1371/journal.ppat.1000009
Source: PubMed

ABSTRACT Borrelia burgdorferi is remarkable for its ability to thrive in widely different environments due to its ability to infect various organisms. In comparison to enteric Gram-negative bacteria, these spirochetes have only a few transmembrane proteins some of which are thought to play a role in solute and nutrient uptake and excretion of toxic substances. Here, we have identified an outer membrane protein, BesC, which is part of a putative export system comprising the components BesA, BesB and BesC. We show that BesC, a TolC homolog, forms channels in planar lipid bilayers and is involved in antibiotic resistance. A besC knockout was unable to establish infection in mice, signifying the importance of this outer membrane channel in the mammalian host. The biophysical properties of BesC could be explained by a model based on the channel-tunnel structure. We have also generated a structural model of the efflux apparatus showing the putative spatial orientation of BesC with respect to the AcrAB homologs BesAB. We believe that our findings will be helpful in unraveling the pathogenic mechanisms of borreliae as well as in developing novel therapeutic agents aiming to block the function of this secretion apparatus.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope.Wereview the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition. Expected final online publication date for the Annual Review of Microbiology Volume 67 is September 08, 2013. Please see for revised estimates.
    Annual review of microbiology 06/2013; · 12.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Periplasmic adaptor proteins are essential components of bacterial tripartite multidrug efflux pumps. Here we report the 2.35Å resolution crystal structure of the BesA adaptor from the spirochete Borrelia burgdorferi solved using selenomethionine derivatized protein. BesA shows the archetypal linear, flexible, multi-domain architecture evident among proteobacteria and retains the lipoyl, β-barrel and membrane-proximal domains that interact with the periplasmic domains of the inner membrane transporter. However, it lacks the α-hairpin domain shown to establish extensive coiled-coil interactions with the periplasmic entrance helices of the outer membrane-anchored TolC exit duct. This has implications for the modelling of assembled tripartite efflux pumps.
    FEBS letters 07/2013; · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Borrelia burgdorferi outer membrane (OM) contains numerous surface-exposed lipoproteins but a relatively low density of integral OM proteins (OMPs). Few membrane-spanning OMPs of B. burgdorferi have been definitively identified, and none are well characterized structurally. Here, we provide evidence that the borrelial OMP P66, a known adhesin with pore-forming activity, forms a β-barrel in the B. burgdorferi OM. Multiple computer-based algorithms predict that P66 forms a β-barrel with either 22- or 24-transmembrane domains. According to our predicted P66 topology, a lysine residue (K487) known to be sensitive to trypsin cleavage was located within a surface-exposed loop. When we aligned the mature P66 amino acid sequences from B. burgdorferi and B. garinii, we found that K487 was present only in the B. burgdorferi P66 protein sequence. When intact cells from each strain were treated with trypsin, only B. burgdorferi P66 was trypsin-sensitive, indicating that K487 is surface-exposed as predicted. Consistent with this observation, when we inserted a c-Myc tag adjacent to K487 and utilized surface localization immunofluorescence, we detected the loop containing K487 on the surface of B. burgdorferi. P66 was examined by both Triton X-114 phase partitioning and circular dichroism, confirming that the protein is amphiphilic and contains extensive (48%) β-sheet, respectively. Moreover, P66 also was able to incorporate into liposomes and form channels in large unilamellar vesicles. Finally, blue-native PAGE (BN-PAGE) revealed that under non-denaturing conditions P66 is found in large complexes of ∼400 kDa and ∼600 kDa. Outer surface lipoproteins A (OspA) and OspB both co-immunoprecipitate with P66, demonstrating that P66 associates with OspA and OspB in B. burgdorferi. The combined computer-based structural analyses and supporting physicochemical properties of P66 provide a working model to further examine the porin and integrin-binding activities of this OMP as they relate to B. burgdorferi physiology and Lyme disease pathogenesis.
    Journal of bacteriology 12/2013; · 3.94 Impact Factor

Full-text (3 Sources)

Available from
May 20, 2014