Use of a U16 snoRNA-containing ribozyme library to identify ribozyme targets in HIV-1.

Division of Molecular Biology, Beckman Research Institute of The City of Hope, Duarte, California 91010, USA.
Molecular Therapy (Impact Factor: 6.43). 07/2008; 16(6):1113-9. DOI: 10.1038/mt.2008.54
Source: PubMed

ABSTRACT Hammerhead ribozymes have been shown to silence human immunodeficiency virus-1 (HIV-1) gene expression by site-specific cleavage of viral mRNA. The two major factors that determine whether ribozymes will be effective for post-transcriptional gene silencing are colocalization of the ribozyme and the target RNAs, and the choice of an appropriate target site on the mRNA. An effective screening strategy for potential targets on the viral genome is the use of ribozyme libraries in cell culture. Capitalizing on previous findings that HIV-1 and ribozymes can be colocalized in the nucleolus, we created a novel hammerhead ribozyme library by inserting hammerhead ribozymes with fully randomized stems 1 and 2 into the body of the U16 small nucleolar RNA (snoRNA). Following three rounds of cotransfection with an HIV-1 proviral DNA harboring the herpes simplex virus thymidine kinase (HSV-TK) gene, we selected for gancyclovir-resistant cells and identified a ribozyme sequence that could potentially target both the U5 and gag genes of HIV-1 regions on the HIV-1 genome through partial homologies with these targets. When the ribozymes were converted to full complementarity with the targets, they provided potent inhibition of HIV-1 replication in cell culture. These results provide a novel approach for identifying ribozyme targets in HIV-1.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How does a non-coding RNA evolve in cells? To address this question experimentally we evolved a trans-splicing variant of the group I intron ribozyme from Tetrahymena over 21 cycles of evolution in E.coli cells. Sequence variation was introduced during the evolution by mutagenic and recombinative PCR, and increasingly active ribozymes were selected by their repair of an mRNA mediating antibiotic resistance. The most efficient ribozyme contained four clustered mutations that were necessary and sufficient for maximum activity in cells. Surprisingly, these mutations did not increase the trans-splicing activity of the ribozyme. Instead, they appear to have recruited a cellular protein, the transcription termination factor Rho, and facilitated more efficient translation of the ribozyme's trans-splicing product. In addition, these mutations affected the expression of several other, unrelated genes. These results suggest that during RNA evolution in cells, four mutations can be sufficient to evolve new protein interactions, and four mutations in an RNA molecule can generate a large effect on gene regulation in the cell.
    PLoS ONE 01/2014; 9(1):e86473. DOI:10.1371/journal.pone.0086473 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies.
    Molecular Therapy 07/2014; 3:e178. DOI:10.1038/mtna.2014.31 · 6.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleic acid therapies targeting HIV replication have the potential to be used in conjunction with or in place of the standard small-molecule therapies. Among the different classes of nucleic acid therapies, several ribozymes (Rzs, RNA enzymes) have been developed to target HIV RNA. The design of Rzs targeting HIV RNA is complicated by the sequence diversity of viral strains and the structural diversity of their target sites. Using the SOFA-HDV Rz as an example, this chapter describes methods that can be used to design Rzs for controlling HIV replication. We describe how to (1) identify highly conserved Rz target sites in HIV RNA; (2) generate a set of Rzs with the potential to be used as therapeutics; and (3) screen these Rzs for activity against HIV production.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1103:31-43. DOI:10.1007/978-1-62703-730-3_3 · 1.29 Impact Factor


Available from