Structure of acostatin, a dimeric disintegrin from Southern copperhead (Agkistrodon contortrix contortrix), at 1.7 Å resolution

National Synchrotron Light Source, Brookhaven National Laboratory, Building 725D, Upton, NY 11973, USA.
Acta Crystallographica Section D Biological Crystallography (Impact Factor: 2.67). 05/2008; 64(Pt 4):466-70. DOI: 10.1107/S0907444908002370
Source: PubMed


Disintegrins are a family of small (4–14 kDa) proteins that bind to another class of proteins, integrins. Therefore, as integrin inhibitors, they can be exploited as anticancer and antiplatelet agents. Acostatin, an αβ heterodimeric disintegrin, has been isolated from the venom of Southern copperhead (Agkistrodon contortrix contortrix). The three-dimensional structure of acostatin has been determined by macromolecular crystallography using the molecular-replacement method. The asymmetric unit of the acostatin crystals consists of two heterodimers. The structure has been refined to an R
work and R
free of 18.6% and 21.5%, respectively, using all data in the 20–1.7 Å resolution range. The structure of all subunits is similar and is well ordered into N-terminal and C-­terminal clusters with four intramolecular disulfide bonds. The overall fold consists of short β-sheets, each of which is formed by a pair of antiparallel β-strands connected by β-turns and flexible loops of different lengths. Conformational flexibility is found in the RGD loops and in the C-terminal segment. The interaction of two N-terminal clusters via two intermolecular disulfide bridges anchors the αβ chains of the acostatin dimers. The C-terminal clusters of the heterodimer project in opposite directions and form a larger angle between them in comparison with other dimeric disintegrins. Extensive interactions are observed between two heterodimers, revealing an αββα acostatin tetramer. Further experiments are required to identify whether the αββα acostatin complex plays a functional role in vivo.

Download full-text


Available from: Francis S Markland,
46 Reads
  • Source
    • "These small polypeptides hold a significant translational potential as anti-cancer agents based on their anti-angiogenic and anti-metastatic effects demonstrated in various experimental settings [20], [21], [22]. The integrin-binding activity of disintegrins depends on the appropriate pairing of several cysteine residues responsible for the disintegrin fold, a mobile 11-amino acid loop protruding from the polypeptide core displaying a tri-peptide motif, usually RGD (Arg-Gly-Asp), that is conserved in many disintegrins [23], [24]. Although these molecules naturally evolved to efficiently bind to the activated platelet-specific integrin αIIbβ3, thus disrupting the process of platelet aggregation (the final step in blood clotting), most purified snake venom disintegrins are rather promiscuous in that they bind to several β1, β3 or β5 integrin members, albeit with different affinities and selectivity [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN) can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1), VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC) inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis). Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN) was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.
    PLoS ONE 06/2010; 5(6):e10929. DOI:10.1371/journal.pone.0010929 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Snake venom contains mixture of bioactive proteins and polypeptides. Most of these proteins and polypeptides exist as monomers, but some of them form complexes in the venom. These complexes exhibit much higher levels of pharmacological activity compared to individual components and play an important role in pathophysiological effects during envenomation. They are formed through covalent and/or non-covalent interactions. The subunits of the complexes are either identical (homodimers) or dissimilar (heterodimers; in some cases subunits belong to different families of proteins). The formation of complexes, at times, eliminates the non-specific binding and enhances the binding to the target molecule. On several occasions, it also leads to recognition of new targets as protein-protein interaction in complexes exposes the critical amino acid residues buried in the monomers. Here, we describe the structure and function of various protein complexes of snake venoms and their role in snake venom toxicity.
    Cellular and Molecular Life Sciences CMLS 07/2009; 66(17):2851-71. DOI:10.1007/s00018-009-0050-2 · 5.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many snake venom proteins have been isolated that affect platelet plug formation by interacting either with platelet integrins, membrane glycoprotein Ib (GPIb), or plasma von Willebrand factor (VWF). Among them, disintegrins purified from various snake venoms are strong inhibitors of platelet aggregation. Botrocetin and bitiscetin derived from Bothrops jararaca and Bitis arietans venom, respectively, induce VWF-dependent platelet agglutination in vitro. Several GPIb-binding proteins have also been isolated from snake venoms. In this review, we focus on the structure and function of those snake venom proteins that influence platelet plug formation. These proteins are potentially useful as reagents for the sub-diagnosis of platelet disorder or von Willebrand disease, as well as for clinical and basic research of thrombosis and hemostasis.
    Toxins 01/2010; 2(1):10-23. DOI:10.3390/toxins2010010 · 2.94 Impact Factor
Show more