Article

Dose-dependent thrombus resolution due to oral plaminogen activator inhibitor (PAI)-1 inhibition with tiplaxtinin in a rat stenosis model of venous thrombosis.

Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0654, USA.
Thrombosis and Haemostasis (Impact Factor: 6.09). 04/2008; 99(4):749-58. DOI:10.1160/TH07-11-0669
Source: PubMed

ABSTRACT This study aimed to evaluate a small-molecule PAI-1 inhibitor (PAI-039; tiplaxtinin) in a rodent stenosis model of venous thrombosis in a two-phase experiment. Phase 1 determined the efficacy of tiplaxtinin against Lovenox (LOV), while phase 2 determined the dose-dependent efficacy. For both phases, drug treatment began 24 hours after surgically induced venous thrombosis and continued for four days. Phase 1 animals (n = 24) receiving low-dose (LD; 1 mg/kg oral gavage) PAI-1 inhibitor demonstrated a 52% decrease in thrombus weight (TW) versus controls (p < 0.05) with significant reductions in active plasma PAI-1, while the high-dose (HD; 10 mg/kg oral gavage) group demonstrated a 23% reduction in TW versus controls. Animals treated subcutaneously with LOV (3 mg/kg) showed a 39% decrease in TW versus controls (p < 0.05). Coagulation tests (aPTT and TCT) were significantly different in LOV compared to PAI-1 inhibitor groups. PAI-039 treatment was also associated with significantly increased return of inferior vena cava blood flow four days post-thrombosis versus controls (p < 0.05). In phase 2 (n = 30), TW was reduced from the 0.5 mg/kg to 5 mg/kg experimental groups, with the 10 mg/kg group demonstrating a paradoxical increase. The 5 mg/kg group showed statistically significant decreases in TW versus controls after four treatment days (p < 0.05). This is the first study to demonstrate dose related effects of PAI-039 on increasing thrombus resolution and inferior vena cava blood flow without adverse effects on anti-coagulation in a rat stenosis model of venous thrombosis.

0 0
 · 
0 Bookmarks
 · 
50 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Inactivators of plasminogen activator inhibitor-1 (PAI-1) have been identified as possible treatments for a range of conditions, including atherosclerosis, venous thrombosis, and obesity. We describe the synthesis and inhibitory activity of a novel series of compounds based on bis-arylsulfonamide and aryl sulfonimide motifs that show potent and specific activity towards PAI-1. Inhibitors containing short linking units between the sulfonyl moieties and a 3,4-dihydroxy aryl substitution pattern showed the most potent inhibitory activity, and retained high specificity for PAI-1 over the structurally-related serpin anti-thrombin III (ATIII).
    Bioorganic & medicinal chemistry letters 02/2010; 20(3):966-70. · 2.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC(50) values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10-1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1.
    Journal of Biological Chemistry 03/2010; 285(11):7892-902. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Fibrosis is a final stage of many lung diseases, with no effective treatment. Plasminogen activator inhibitor-1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators (tPA and uPA, respectively), plays a critical role in the development of fibrosis. In this study, we explored the therapeutic potential of an orally effective small molecule PAI-1 inhibitor, TM5275, in a model of lung fibrosis induced by transforming growth factor-β1 (TGF-β1), the most potent and ubiquitous profibrogenic cytokine, and in human lung fibroblasts (CCL-210 cells). The results show that an intranasal instillation of AdTGF-β1(223/225), an adenovirus expressing constitutively active TGF-β1, increased the expression of PAI-1 and induced fibrosis in murine lung tissue. On the other hand, treating mice with 40 mg/kg of TM5275 for 10 days, starting 4 days after the instillation of AdTGF-β1(223/225), restored the activities of uPA and tPA and almost completely blocked TGF-β1-induced lung fibrosis, as shown by collagen staining, Western blotting, and the measurement of hydroxyproline. No loss of body weight was evident under these treatment conditions with TM5275. Furthermore, we show that TM5275 induced apoptosis in both myofibroblasts (TGF-β1-treated) and naive (TGF-β1-untreated) human lung fibroblasts, and this apoptosis was associated with the activation of caspase-3/7, the induction of p53, and the inhibition of α-smooth muscle actin, fibronectin, and PAI-1 expression. Such an inhibition of fibrotic responses by TM5275 occurred even in cells pretreated with TGF-β1 for 6 hours. Together, the results suggest that TM5275 is a relatively safe and potent antifibrotic agent, with therapeutic potential in fibrotic lung disease.
    American Journal of Respiratory Cell and Molecular Biology 08/2011; 46(1):87-95. · 4.15 Impact Factor