Functional inactivation of the WTX gene is not a frequent event in Wilms’ tumors

Department of Experimental Oncology and Laboratories, Genetic Susceptibility to Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
Oncogene (Impact Factor: 8.56). 05/2008; 27(33):4625-32. DOI: 10.1038/onc.2008.93
Source: PubMed

ABSTRACT For many years the precise genetic etiology of the majority of Wilms' tumors has remained unexplained. Recently, the WTX gene, mapped to chromosome Xq11.1, has been reported to be lost or mutated in approximately one-third of Wilms' tumors. Moreover, in female cases, the somatically inactivated alleles were found to invariantly derive from the active chromosome X. Consequently, WTX has been proposed as a 'one-hit' tumor suppressor gene. To provide further insights on the contribution of WTX to the development of the disease, we have examined 102 Wilms' tumors, obtained from 43 male and 57 female patients. Quantitative PCR analyses detected WTX deletions in 5 of 45 (11%) tumors from males, whereas loss of heterozygosity at WTX-linked microsatellites was observed in 9 tumors from 50 informative females (19%). However, in the latter group, using a combination of HUMARA assay and bisulfite-modified DNA sequencing, we found that the deletion affected the active chromosome X only in two cases (4%). Sequence analyses detected an inactivating somatic mutation of WTX in a single tumor, in which a strongly reduced expression of the mutant allele respect to the wild-type allele was observed, a finding not consistent with its localization on the active chromosome X. Overall, a functional somatic nullizygosity of the WTX gene was ascertained only in seven of the Wilms' tumors included in the study (approximately 7%). Our findings indicate that previously reported estimates on the proportion of Wilms' tumors due to WTX alterations should be reconsidered.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The European Network for Cancer Research in Children and Adolescents consortium organized a workshop in Rome, in June 2012, on "Biology-Driven Drug Development Renal Tumors Workshop" to discuss the current knowledge in pediatric renal cancers and to recommend directions for further research. Wilms tumor is the most common renal tumor of childhood and represents a success of pediatric oncology, with cure rates of more than 85% of cases. However, a substantial minority (∼25%) responds poorly to current therapies and requires "high-risk" treatment or relapse. Moreover, the successfully treated majority are vulnerable to the late effects of treatment, with nearly one quarter reporting severe chronic health conditions by 25 years of follow-up. Main purposes of this meeting were to advance our understanding on the molecular drivers in Wilms tumor, their heterogeneity and interdependencies; to provide updates on the clinical-pathologic associations with biomarkers; to identify eligible populations for targeted drugs; and to model opportunities to use preclinical model systems and prioritize targeted agents for early phase clinical trials. At least three different pathways are involved in Wilms tumor; this review represents the outcome of the workshop discussion on the WNT/β-catenin pathway in Wilms tumorigenesis. Mol Cancer Ther; 12(12); 1-9. ©2013 AACR.
    Molecular Cancer Therapeutics 11/2013; 12(12). DOI:10.1158/1535-7163.MCT-13-0335 · 6.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric malignancies in adults, in contrast to the same diseases in children are clinically more aggressive, resistant to chemotherapeutics, and carry a higher risk of relapse. Molecular profiling of tumor sample using next generation sequencing (NGS) has recently become clinically available. We report the results of targeted exome sequencing of six adult patients with pediatric-type malignancies : Wilms tumor(n=2), medulloblastoma(n=2), Ewing's sarcoma( n=1) and desmoplastic small round cell tumor (n=1) with a median age of 28.8 years. Detection of druggable somatic aberrations in tumors is feasible. However, identification of actionable target therapies in these rare adult patients with pediatric-type malignancies is challenging. Continuous efforts to establish a rare disease registry are warranted.
    01/2015; 2(2):187-92.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is hypothesised that Wilms tumour (WT) results from aberrant renal development due to its embryonic morphology, associated undifferentiated precursor lesions (termed nephrogenic rests) and embryonic kidney-like chromatin and gene expression profiles. From the study of overgrowth syndrome-associated WT, germline dysregulation was identified in the imprinted region at 11p15 affecting imprinted genes IGF2 and H19. This is also detected in ~70% sporadic cases, making this the most common somatic molecular aberration in WT. This review summarises the critical discussion at an international workshop held under the auspices of The European Network for Cancer Research in Children and Adolescents (ENCCA) consortium, where the potential for drug development to target IGF2 and the WT epigenome was debated. Here, we consider current cancer treatments which include targeting the IGF pathway and the use of methylation agents alone or in combination with other drugs in clinical trials of paediatric cancers. Finally, we discuss the possibility of the use of these drugs to treat patients with WT.
    Oncotarget 09/2014; 5(18). · 6.63 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014