Article

Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism.

Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA.
Nature Neuroscience (Impact Factor: 14.98). 06/2008; 11(5):547-54. DOI: 10.1038/nn.2100
Source: PubMed

ABSTRACT Synaptic dysfunction caused by oligomeric assemblies of amyloid-beta peptide (Abeta) has been linked to cognitive deficits in Alzheimer's disease. Here we found that incubation of primary cortical neurons with oligomeric Abeta decreases the level of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), a phospholipid that regulates key aspects of neuronal function. The destabilizing effect of Abeta on PtdIns(4,5)P2 metabolism was Ca2+-dependent and was not observed in neurons that were derived from mice that are haploinsufficient for Synj1. This gene encodes synaptojanin 1, the main PtdIns(4,5)P2 phosphatase in the brain and at the synapses. We also found that the inhibitory effect of Abeta on hippocampal long-term potentiation was strongly suppressed in slices from Synj1+/- mice, suggesting that Abeta-induced synaptic dysfunction can be ameliorated by treatments that maintain the normal PtdIns(4,5)P2 balance in the brain.

0 Followers
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipidomics is a lipid-targeted metabolomics approach focusing on comprehensive analysis of all lipids with which they interact in biology systems. Recent technological advances in MS and chromatography have greatly enhanced the developments and applications of metabolic profiling of diverse lipids in complex biological samples. Lipidomics will not only provide insights into the specific functions of lipid species in health and disease, but will also identify potential biomarkers for establishing preventive or therapeutic programs for human disease. In this review, recent applications of lipidomics to understand animal models of disease such as metabolic syndromes, neurodegenerative diseases, cancer and infectious diseases are considered. We also discuss the lipidomics for the future perspectives and their potential problems.
    Biomarkers in Medicine 02/2015; 9(2):153-168. DOI:10.2217/bmm.14.81 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptojanin 1 (SYNJ1) is a phosphoinositide phosphatase highly expressed in nerve terminals. Its two phosphatase domains dephosphorylate phosphoinositides present in membranes, while its proline-rich domain directs protein-protein interactions with synaptic components, leading to efficient recycling of synaptic vesicles in neurons. Triplication of SYNJ1 in Down's syndrome is responsible for higher level of phosphoinositides, enlarged endosomes, and learning deficits. SYNJ1 downregulation in Alzheimer's disease models is protective towards amyloid-beta peptide (Aβ) toxicity. One missense mutation in one of SYNJ1 functional domains was recently incriminated in an autosomal recessive form of early-onset Parkinson's disease (PD). In the third decade of life, these patients develop progressive Parkinsonism with bradykinesia, dystonia, and variable atypical symptoms such as cognitive decline, seizures, and eyelid apraxia. The identification of this new gene, together with the fact that most of the known PD proteins play a role in synaptic vesicle recycling and lipid metabolism, points out that synaptic maintenance is a key player in PD pathological mechanisms. Studying PD genes as a network regulating synaptic activity could bring insight into understanding the neuropathological processes of PD and help identify new genes at fault in this devastating disorder.
    BioMed Research International 09/2014; 2014:289728. DOI:10.1155/2014/289728 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick disease type A (NPDA) is a fatal disease due to mutations in the acid sphingomyelinase (ASM) gene, which triggers the abnormal accumulation of sphingomyelin (SM) in lysosomes and the plasma membrane of mutant cells. Although the disease affects multiple organs, the impact on the brain is the most invalidating feature. The mechanisms responsible for the cognitive deficits characteristic of this condition are only partially understood. Using mice lacking the ASM gene (ASMKO), a model system in NPDA research, we here report that high sphingomyelin levels in mutant neurons lead to low synaptic levels of phosphoinositide PI(4,5)P2 and reduced activity of its hydrolyzing phosphatase PLCγ, which are key players in synaptic plasticity events. In addition, mutant neurons have reduced levels of membrane-bound MARCKS, a protein required for PI(4,5)P2 membrane clustering and hydrolysis. Intracerebroventricular infusion of a peptide that mimics the effector domain of MARCKS increases the content of PI(4,5)P2 in the synaptic membrane and ameliorates behavioral abnormalities in ASMko mice.
    Neurobiology of Disease 09/2014; 73. DOI:10.1016/j.nbd.2014.09.008 · 5.20 Impact Factor

Preview

Download
1 Download
Available from

Similar Publications