Spine dynamics and synapse remodeling during LTP and memory processes

Department of Neuroscience, Centre Médical Universitaire, 1211 Geneva 4, Switzerland.
Progress in brain research (Impact Factor: 5.1). 02/2008; 169:199-207. DOI: 10.1016/S0079-6123(07)00011-8
Source: PubMed

ABSTRACT While changes in the efficacy of synaptic transmission are believed to represent the physiological bases of learning mechanisms, other recent studies have started to highlight the possibility that a structural reorganization of synaptic networks could also be involved. Morphological changes of the shape or size of dendritic spines or of the organization of postsynaptic densities have been described in several studies, as well as the growth and formation following stimulation of new protrusions. Confocal in vivo imaging experiments have further revealed that dendritic spines undergo a continuous turnover and replacement process that may vary as a function of development, but can be markedly enhanced by sensory activation or following brain damage. The implications of these new aspects of plasticity for learning and memory mechanisms are discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic effects of physical therapy in neurologic disorders mostly rely on the promotion of use-dependent synaptic plasticity in damaged neuronal circuits. Genetic differences affecting the efficiency of synaptic plasticity mechanisms could explain why some patients do not respond adequately to the treatment. It is known that physical exercise activates the endocannabinoid system and that stimulation of cannabinoid CB1 receptors (CB1Rs) promotes synaptic plasticity in both rodents and humans. We thus tested whether CB1R genetic variants affect responsiveness to exercise therapy. We evaluated the effect of a genetic variant of the CB1R associated with reduced receptor expression (patients with long AAT trinucleotide short tandem repeats in the CNR1 gene) on long-term potentiation (LTP)-like cortical plasticity induced by transcranial magnetic theta burst stimulation (TBS) of the motor cortex and, in parallel, on clinical response to exercise therapy in patients with multiple sclerosis. We found that patients with long AAT CNR1 repeats do not express TBS-induced LTP-like cortical plasticity and show poor clinical benefit after exercise therapy. Our results provide the first evidence that genetic differences within the CB1R may influence clinical responses to exercise therapy, and they strengthen the hypothesis that CB1Rs are involved in the regulation of synaptic plasticity and in the control of spasticity in humans. This information might be of great relevance for patient stratification and personalized rehabilitation treatment programs.
    12/2014; 1(4):e48. DOI:10.1212/NXI.0000000000000048
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An increased intake of the antioxidant α-Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Glia-synapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased. These findings indicate that gestational and neonatal exposure to supranutritional tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant glia-synapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.
    European journal of histochemistry: EJH 04/2014; 58(2):2355. DOI:10.4081/ejh.2014.2355 · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a vital role in the neurological basis underlying nervous system diseases. However, the role of HCN channels in drug addiction is not fully understood. In the present study, we investigated the expression of HCN1 and HCN2 subunits in hippocampal CA1 and the potential molecular mechanisms underlying the modulation of HCN channels in rats with chronic morphine exposure with approaches of electrophysiology, water maze, and Western blotting. We found that chronic morphine exposure (5 mg/kg, sc, for 7 days) caused an inhibition of long-term potentiation (LTP) and impairment of spatial learning and memory, which is associated with a decrease in HCN1, and an increase in HCN2 on cell membrane of hippocampal CA1 area. Additional experiments showed that the imbalance of cell membrane HCN1 and HCN2 expression under chronic morphine exposure was related to an increase in expression of TPR containing Rab8b interacting protein (TRIP8b) (1a-4) and TRIP8b (1b-2), and phosphorylation of protein kinase A (PKA) and adaptor protein 2 μ2 (AP2 μ2). Our results demonstrate the novel information that drug addiction-induced impairment of learning and memory is involved in the imbalance of HCN1 and HCN2 subunits, which is mediated by activation of TRIP8b (1a-4), TRIP8b (1b-2), PKA and AP2 μ2.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 10/2014; DOI:10.1016/j.pnpbp.2014.09.010 · 4.03 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014