Crystal structure and Raman studies of dsFP483, a cyan fluorescent protein from Discosoma striata.

Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA.
Journal of Molecular Biology (Impact Factor: 3.91). 06/2008; 378(4):871-86. DOI: 10.1016/j.jmb.2008.02.069
Source: PubMed

ABSTRACT To better understand the diverse mechanisms of spectral tuning operational in fluorescent proteins (FPs), we determined the 2.1-A X-ray structure of dsFP483 from the reef-building coral Discosoma. This protein is a member of the cyan class of Anthozoa FPs and exhibits broad, double-humped excitation and absorbance bands, with a maximum at 437-440 nm and a shoulder at 453 nm. Although these features support a heterogeneous ground state for the protein-intrinsic chromophore, peak fluorescence occurs at 483 nm for all excitation wavelengths, suggesting a common emissive state. Optical properties are insensitive to changes in pH over the entire range of protein stability. The refined crystal structure of the biological tetramer (space group C2) demonstrates that all protomers bear a cis-coplanar chromophore chemically identical with that in green fluorescent protein (GFP). To test the roles of specific residues in color modulation, we investigated the optical properties of the H163Q and K70M variants. Although absorbance bands remain broad, peak excitation maxima are red shifted to 455 and 460 nm, emitting cyan light and green light, respectively. To probe chromophore ground-state features, we collected Raman spectra using 752-nm excitation. Surprisingly, the positions of key Raman bands of wild-type dsFP483 are most similar to those of the neutral GFP chromophore, whereas the K70M spectra are more closely aligned with the anionic form. The Raman data provide further evidence of a mixed ground state with chromophore populations that are modulated by mutation. Possible internal protonation equilibria, structural heterogeneity in the binding sites, and excited-state proton transfer mechanisms are discussed. Structural alignments of dsFP483 with the homologs DsRed, amFP486, and zFP538-K66M suggest that natural selection for cyan is an exquisitely fine-tuned and highly cooperative process involving a network of electrostatic interactions that may vary substantially in composition and arrangement.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Computational methods were used to generate the lowest energy conformations of the immature precyclized forms of the 28 naturally occurring GFP-like proteins deposited in the pdb. In all 28 GFP-like proteins, the beta-barrel contracts upon chromophore formation and becomes more rigid. Our prior analysis of over 260 distinct naturally occurring GFP-like proteins revealed that most of the conserved residues are located in the top and bottom of the barrel in the turns between the β-sheets (Ong et al. 2011) [1]. Structural analyses, molecular dynamics simulations and the Anisotropic Network Model were used to explore the role of these conserved lid residues as possible folding nuclei. Our results are internally consistent and show that the conserved residues in the top and bottom lids undergo relatively less translational movement than other lid residues, and a number of these residues may play an important role as hinges or folding nuclei in the fluorescent proteins.
    Chemical Physics 01/2014; 429:5–11. DOI:10.1016/j.chemphys.2013.11.015 · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescent proteins (FPs), featuring the same chromophore but different chromophore-protein interactions, display remarkable spectral variations even when the same chromophore protonation state, i.e. the anionic state, is involved. We examine the mechanisms behind this tuning by means of structural analysis, molecular dynamics simulations, and vertical excitation energy calculations using QM/MM Time-Dependent Density Functional Theory (TD-DFT), CASPT2/CASSCF, and SAC-CI. The proteins under investigation include the structurally similar, though spectrally distinct, Dronpa and mTFP0.7, with absorption peaks at 453 and 503 nm, respectively. We extend our analysis to two Green Fluorescent Protein variants, GFP-S65T (absorption peak at 484 nm), for comparison with previous computational studies, and GFP-S65G/V68L/S72A/T203Y, a yellow fluorescent protein (514 nm), in order to include one of the most red-shifted FPs containing a GFP-like chromophore. We compare different choices of the QM system, and we discuss how molecular dynamics simulations affect the calculation of excitation energies, with respect to X-ray structures. We are able to partially reproduce the spectral tuning of the FPs and correlate it to the chromophore bond-length variations, as determined by specific interactions with the chromophore environment.
    Journal of Chemical Theory and Computation 11/2012; DOI:10.1021/ct3007452 · 5.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a monomeric yellow-green fluorescent protein, mNeonGreen, derived from a tetrameric fluorescent protein from the cephalochordate Branchiostoma lanceolatum. mNeonGreen is the brightest monomeric green or yellow fluorescent protein yet described to our knowledge, performs exceptionally well as a fusion tag for traditional imaging as well as stochastic single-molecule superresolution imaging and is an excellent fluorescence resonance energy transfer (FRET) acceptor for the newest cyan fluorescent proteins.
    Nature Methods 03/2013; DOI:10.1038/nmeth.2413 · 23.57 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014