Article

Insecticidal activity of a basement membrane-degrading protease against Heliothis virescens (Fabricius) and Acyrthosiphon pisum (Harris)

Department of Entomology, Iowa State University, 418 Science II, Ames, IA 50011-3222, USA.
Journal of Insect Physiology (Impact Factor: 2.5). 06/2008; 54(5):777-89. DOI: 10.1016/j.jinsphys.2008.02.008
Source: PubMed

ABSTRACT ScathL is a cathepsin L-like cysteine protease derived from the flesh fly Sarcophaga peregrina that functions in basement membrane (BM) remodeling during insect development. A recombinant baculovirus expressing ScathL (AcMLF9.ScathL) kills larvae of the tobacco budworm, Heliothis virescens, significantly faster than the wild-type virus. Here, we show that the occurrence of larval melanization prior to death was closely associated with the onset of high cysteine protease activity of ScathL in the hemolymph of fifth instars infected with AcMLF9.ScathL, but not with AcMLF9.ScathL.C146A, a recombinant baculovirus expressing a catalytic site mutant of ScathL. Fragmented fat body, ruptured gut and malpighian tubules, and melanized tracheae were observed in AcMLF9.ScathL-infected larvae. Phenoloxidase activity in hemolymph was unchanged, but the pool of prophenoloxidase was significantly reduced in virus-infected larvae and further reduced in AcMLF9.ScathL-infected larvae. The median lethal dose (LD(50)) for purified ScathL injected into fifth-instar H. virescens was 11.0 microg/larva. ScathL was also lethal to adult pea aphids, Acyrthosiphon pisum with a similar loss of integrity of the gut and fat body. Injection with purified ScathL.C146A or bovine trypsin at 20 microg/larva did not produce any effect in either insect. These results illustrate the potent insecticidal effects of ScathL cysteine protease activity and the potential for use of ScathL in development of insect resistant transgenic plants when combined with an appropriate delivery system.

0 Followers
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The enterobacterium Photorhabdus luminescens produce a number of toxins to kill its insect host. By analyzing the genomic sequence of P. luminescens TT01, we found that amino acid sequences encoded by plu1961 and plu1962 showed high similarity to XaxAB binary toxin of Xenorhabuds nematophila, which has both necrotic and apoptotic activities in both insect and mammalian cells in vitro. In order to evaluate the biological activity of Plu1961/ Plu1962, their coding genes were cloned and expressed in E. coli. Both Plu1961 and Plu1962 were expressed as soluble protein in BL21 (DE3) and their mixture caused insect midgut CF-203 cells death via necrosis. Confocal fluorescence microscopy showed that Plu1961/ Plu1962 mixture was able to depolymerize microtubule and induce the increase of plasma membrane permeabilization in CF-203 cells. Moreover, co-expression of Plu1961/ Plu1962 in the same cytoplasm exhibited cytotoxic effect against mammalian cells (B16, 4T1 and HeLa cells) and injectable activity against Spodoptera exigua larvae. Until now, there are two types of binary toxins have been identified in P. luminescens, the first type is PirAB and Plu1961/ Plu1962 is the second one. The biological role of Plu1961/ Plu1962 binary toxin played in the infection process should attract more attention in future. This article is protected by copyright. All rights reserved.
    FEMS Microbiology Letters 11/2013; 350(1). DOI:10.1111/1574-6968.12321 · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In the last decades lectins have received a lot of attention as potential tools in pest control. Despite substantial progress in the field not all the factors determining insecticidal potency and selectivity of these proteins have been described. Recently, three lectins, RSA (Rhizoctonia solani agglutinin), SNA-I and SNA-II (Sambucus nigra agglutinin I and II) have been shown to be toxic to aphids and caterpillars. In this project we investigated if these lectins are also toxic against Coleoptera (beetles) larvae and a cell line of the red flour beetle, Tribolium castaneum, a model organism and important pest of stored products. Furthermore, we analyzed the stability of the lectins in the larval gut and used confocal microscopy to compare their efficiency in passing through the peritrophic matrix (PM). We observed that all three lectins were toxic against the T. castaneum cell line and their effectiveness in vitro was in decreasing order SNA-II > SNA-I > RSA with the respective EC50 being 0.1, 0.5 and 3.6 μg/ml. Larvae feeding for 16 day on diets containing 2% RSA, 2% SNA-II and 2% SNA-I weighed 0.14 ± 0.07 mg, 0.67 ± 0.44 mg and 1.89 ± 0.38 mg, corresponding to approximately 7%, 36% and 80% of control larvae, respectively. As a consequence, RSA increased the time to adult emergence by over 3-fold, SNA-II by 1.9-fold and SNA-I by 1.2 fold. RSA and SNA-II were stable in the larval gut, while SNA-I was digested and excreted with the feces. Finally, confocal microscopy confirmed that RSA passed through the PM more efficiently than SNA-II. In conclusion, our data suggest that the lectin ability to pass through the PM, governed by molecule dimensions, charge and size of PM pores, is one of the features that determine the toxicity of these insecticidal proteins.
    Journal of Insect Physiology 09/2014; 70. DOI:10.1016/j.jinsphys.2014.09.004 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification.

Full-text (2 Sources)

Download
100 Downloads
Available from
May 27, 2014