Article

Itinerant exosomes: emerging roles in cell and tissue polarity.

Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA.
Trends in cell biology (Impact Factor: 12.31). 06/2008; 18(5):199-209. DOI: 10.1016/j.tcb.2008.03.002
Source: PubMed

ABSTRACT Cells use secreted signals (e.g. chemokines and growth factors) and sophisticated vehicles such as argosomes, cytonemes, tunneling nanotubes and exosomes to relay important information to other cells, often over large distances. Exosomes, 30-100-nm intraluminal vesicles of multivesicular bodies (MVB) released upon exocytic fusion of the MVB with the plasma membrane, are increasingly recognized as a novel mode of cell-independent communication. Exosomes have been shown to function in antigen presentation and tumor metastasis, and in transmitting infectious agents. However, little is known about the biogenesis and function of exosomes in polarized cells. In this review, we discuss new evidence suggesting that exosomes participate in the transport of morphogens and RNA, and thus influence cell polarity and developmental patterning of tissues.

Full-text

Available from: Aparna Lakkaraju, Jul 09, 2014
0 Followers
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endosomal trafficking plays integral roles in various eukaryotic cell activities. In animal cells, a member of the RAB GTPase family, RAB5, is a key regulator of various endosomal functions. In addition to orthologs of animal RAB5, plants harbor the plant-specific RAB5 group, the ARA6 group, which is conserved in land plant lineages. In Arabidopsis thaliana, ARA6 and conventional RAB5 act in distinct endosomal trafficking pathways; ARA6 mediates trafficking from endosomes to the plasma membrane, whereas conventional RAB5 acts in endocytic and vacuolar trafficking pathways. ARA6 is also required for normal salt and osmotic stress tolerance, although the functional link between ARA6 and stress tolerance remains unclear. In this study, we investigated ARA6 function in stress tolerance by monitoring broad-scale changes in gene expression in the ara6 mutant. A comparison of the expression profiles between wild-type and ara6-1 plants revealed that the expression of the Qua-Quine Starch (QQS) gene was significantly affected by the ara6-1 mutation. QQS is involved in starch homeostasis, consistent with the starch content decreasing in the ara6 mutants to approximately 60% of that of the wild-type plant. In contrast, the free and total glucose content increased in the ara6 mutants. Moreover, the proliferation of Pseudomonas syringae pv. tomato DC3000 was repressed in ara6 mutants, which could be attributed to the elevated sugar content. These results suggest that ARA6 is responsible for starch and sugar homeostasis, most likely through the function of QQS. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Plant and Cell Physiology 02/2015; DOI:10.1093/pcp/pcv029 · 4.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exosomes are the extracellular vesicles secreted by various cells. Exosomes mediate intercellular communication by delivering a variety of molecules between cells. Cancer cell derived exosomes seem to be related with tumor progression and metastasis. Tumor microenvironment is thought to be acidic and this low pH controls exosome physiology, leading to tumor progression. Despite the importance of microenvironmental pH on exosome, most of exosome studies have been performed without regard to pH. Therefore, the difference of exosome stability and yield of isolation by different pH need to be studied. In this research, we investigated the yield of total exosomal protein and RNA after incubation in acidic, neutral and alkaline conditioned medium. Representative exosome markers were investigated by western blot after incubation of exosomes in different pH. As a result, the concentrations of exosomal protein and nucleic acid were significantly increased after incubation in the acidic medium compared with neutral medium. The higher levels of exosome markers including CD9, CD63 and HSP70 were observed after incubation in an acidic environment. On the other hand, no exosomal protein, exosomal RNA and exosome markers have been detected after incubation in an alkaline condition. In summary, our results indicate that the acidic condition is the favorable environment for existence and isolation of exosomes. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 04/2015; 461(1). DOI:10.1016/j.bbrc.2015.03.172 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The trans-Golgi network functions in the distribution of cargo into different transport vesicles that are destined to endosomes, lysosomes and the plasma membrane. Over the years, it has become clear that more than one transport pathway promotes plasma membrane localization of proteins. In spite of the importance of temporal and spatial control of protein localization at the plasma membrane, the regulation of sorting into and the formation of different transport containers are still poorly understood. In this review different transport pathways, with a special emphasis on exomer-dependent transport, and concepts of regulation and sorting at the TGN are discussed.
    03/2015; 5(1):84-98. DOI:10.3390/membranes5010084