Article

Expression of CD175 (Tn), CD175s (sialosyl-Tn) and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells

Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
International Journal of Cancer (Impact Factor: 5.01). 07/2008; 123(1):89-99. DOI: 10.1002/ijc.23493
Source: PubMed

ABSTRACT The expression of the histo-blood group carbohydrate structures T-nouvelle (Tn, CD175), sialylated Tn (CD175s) and the Thomsen-Friedenreich disaccharide (TF, CD176) on human leukemia cell lines was analyzed by their reactivity with specific monoclonal antibodies in flow cytometry, immunohistology and immunoprecipitation. Expression of sialylated CD176 was evaluated by comparative immunostaining with anti-CD176 antibodies before and after sialidase treatment. While only few cell lines expressed unmasked CD176, sialylated CD176 was present on all hematopoietic cell lines and native lymphocytes examined. CD175 and CD175s are preferentially expressed on erythroblastic leukemia cell lines. CD175s expression in these cells is consistent with the transcription of the gene encoding the key enzyme alpha2,6-sialyltransferase (hST6GalNAc1). The staining intensity was reduced after methanol pretreatment of cells, indicating that these glycans are partially expressed as constituents of glycosphingolipids. Immunoprecipitation and subsequent Western blotting revealed a series of distinct high molecular glycoproteins as carriers for these carbohydrate antigens. CD34 was identified as major carrier of CD176 by immunoprecipitation and microsequencing on a KG-1 subline enriched for CD176 expression. Incubation of several CD176-positive cell lines with anti-CD176 antibodies induced apoptosis of these cells, an effect not observed with anti-CD175/CD175s antibodies. Since the presence of naturally occurring anti-CD176 antibodies may represent a mechanism of immunosurveillance against CD176-positive tumor cells, we propose that sialylation of surface-expressed CD176--among other functions--protects against apoptosis.

Download full-text

Full-text

Available from: Reinhard Schwartz-Albiez, Oct 13, 2014
0 Followers
 · 
153 Views
  • Source
    • "A relatively small number of stem cell markers have been shown to be glycans bound to proteins or lipids (Table 2). Glycans are known to be developmentally regulated (Solter and Knowles 1978; Muramatsu 1988; Fenderson and Andrews 1992; Cao et al. 2001), and are often altered on tumor cells (Hakomori 1989; Cao et al. 1995; Dabelsteen 1996; Cao et al. 1997; Brockhausen 1999; Le Pendu et al. 2001; Cao et al. 2008). The question arises whether glycans may be able to play a role as stem cell markers in a more comprehensive sense. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve this problem in at least a subgroup of stem cell markers. Glycosylation may provide the key.
    SpringerPlus 12/2013; 2(1):301. DOI:10.1186/2193-1801-2-301
    • "The human papillomavirus is linked to cervical cancers and head and neck, skin, and other cancers (zur Hausen 2009). It has been known for decades that human papillomavirus is associated with DNA hypermethylation, which may prove to be a useful biomarker for cancer (Cao et al. 2008; Fernandez and Esteller 2010; Wentzensen et al. 2009). In addition to methylation, human papillomavirus E7 has the ability to bind and regulate the enzymatic activity of DNMT1 (Burgers et al. 2007) and has also been shown to perturb the chromatin remodeling machinery, such as histone deacetylase activity (Brehm et al. 1999), histone acetylase activity (Peng et al. 2000), and acetyltransferase domain of pCAF (Avvakumov et al. 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: This review focuses on how environmental factors through epigenetics modify disease risk and health outcomes. Major epigenetic events, such as histone modifications, DNA methylation, and microRNA expression, are described. The function of dose, duration, composition, and window of exposure in remodeling the individual's epigenetic terrain and disease susceptibility are addressed. The ideas of lifelong editing of early-life epigenetic memories, transgenerational effects through germline transmission, and the potential role of hydroxylmethylation of cytosine in developmental reprogramming are discussed. Finally, the epigenetic effects of several major classes of environmental factors are reviewed in the context of pathogenesis of disease. These include endocrine disruptors, tobacco smoke, polycyclic aromatic hydrocarbons, infectious pathogens, particulate matter, diesel exhaust particles, dust mites, fungi, heavy metals, and other indoor and outdoor pollutants. We conclude that the summation of epigenetic modifications induced by multiple environmental exposures, accumulated over time, represented as broad or narrow, acute or chronic, developmental or lifelong, may provide a more precise assessment of risk and consequences. Future investigations may focus on their use as readouts or biomarkers of the totality of past exposure for the prediction of future disease risk and the prescription of effective countermeasures.
    ILAR journal / National Research Council, Institute of Laboratory Animal Resources 12/2012; 53(3-4):289-305. DOI:10.1093/ilar.53.3-4.289 · 1.05 Impact Factor
  • Source
    • "Different laboratories generated a number of different mAbs designated as " anti-Tn " (Hirohashi et al. 1985; Takahashi et al. 1988; Numata et al. 1990; Avichezer et al. 1997; Oppezzo et al. 2000; Kannagi and Hakomori 2001; Ando et al. 2008; Welinder et al. 2011). At the 7th Conference on Human Leucocyte Differentiation Antigens, these Abs were assigned as CD175 (Karsten 2002; Cao et al. 2008). Obviously, CD175 is not homogenous, because it combines a "
    [Show abstract] [Hide abstract]
    ABSTRACT: CD175 or Tn antigen is a carbohydrate moiety of N-acetylgalactosamine (GalNAc)α1-O- linked to the residue of amino acid serine or threonine in a polypeptide chain. Despite the chemical simplicity of the Tn antigen, its antigenic structure is considered to be complex and the clear determinants of Tn antigenicity remain poorly understood. As a consequence, a broad variety of anti-Tn monoclonal antibodies (mAbs) have been generated. To further investigate the nature and complexity of the Tn antigen, we generated seven different anti-Tn mAbs of IgM and IgG classes raised against human Jurkat T cells, which are Tn-positive due to the low activity of T-synthase and mutation in specific chaperone Cosmc. The binding analysis of anti-Tn mAbs with the array of synthetic saccharides, glycopeptides and O-glycoproteins revealed unexpected differences in specificities of anti-Tn mAbs. IgM mAbs bound the terminal GalNAc residue of the Tn antigen irrespective of the peptide context or with low selectivity to the glycoproteins. In contrast, IgG mAbs recognized the Tn antigen in the context of a specific peptide motif. Particularly, JA3 mAb reacted to the GSPP or GSPAPP, and JA5 mAb recognized specifically the GSP motif (glycosylation sites are underlined). The major O-glycan carrier proteins CD43 and CD162 and isoforms of CD45 expressed on Jurkat cells were precipitated by anti-Tn mAbs with different affinities. In summary, our data suggest that Tn antigen-Ab binding capacity is determined by the peptide context of the Tn antigen, antigenic specificity of the Ab and class of the immunoglobulin. The newly generated anti-Tn IgG mAbs with the strong specificity to glycoprotein CD43 can be particularly interesting for the application in leukemia diagnostics and therapy.
    Glycobiology 12/2011; 22(4):529-42. DOI:10.1093/glycob/cwr178 · 3.14 Impact Factor
Show more