Fabrication, Structural Characterization, and Applications of Langmuir and Langmuir−Blodgett Films of a Poly(azo)urethane

Departamento de Física, Química e Biologia, Faculdade de Ciências e Tecnologia, UNESP, Presidente Prudente/SP, 19060-080, Brazil.
Langmuir (Impact Factor: 4.46). 06/2008; 24(9):4729-37. DOI: 10.1021/la703328z
Source: PubMed


The synthesis of a poly(azo)urethane by fixing CO(2) in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed "clean method" and the polymers obtained are named "NIPUs" (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per mer unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.

Download full-text


Available from: Eduardo R. Pérez González, May 22, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organic thin films are widely applied as transducers in devices whose performance is determined by the optical and electrical properties of the films. In this context, the molecular architecture of the thin films plays an important role. In this work we report the fabrication and characterization of a poly(azo)urethane synthesized fixing CO2 in bis-epoxide followed by a copolymerization reaction with an azodiamine without using isocyanate. The poly(azo)urethane thin films were fabricated by physical vapor deposition (PVD) technique using vacuum thermal evaporation. The molecular architecture of the PVD films was investigated under control growth at nanometer level of thickness, as well as the surface morphology at micro and nanometer scales and the molecular organization. The thermal stability of the poly(azo)urethane molecules, which is a challenge in itself considering the thermal evaporation process, was followed by thermogravimetric analysis (TG) and also by both Fourier transform infrared absorption (FTIR) and ultraviolet-visible (UV-vis) absorption spectroscopies. The UV-vis absorption spectra showed a linear growth of the absorbance of the PVD films with the mass thickness measured by a quartz crystal balance. A random distribution of the poly(azo)urethane molecules in the PVD films was revealed by FTIR spectra. The film morphology was investigated at microscopic level combining chemical and topographical information through micro-Raman technique. At nanoscopic scale, the morphology was investigated by atomic force microscopy (AFM) for films fabricated using distinct evaporation rates. As a proof of principle (for potential applications), the film luminescence was measured over a wide range of temperature. Interestingly, an unusual increase of fluorescence intensity was observed at +150 degrees C after a monotonic decrease from -150 degrees C.
    Journal of Nanoscience and Nanotechnology 05/2010; 10(5):3012-21. DOI:10.1166/jnn.2010.1923 · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This minireview describes the main developments of electronic tongues (e-tongues) and taste sensors in recent years, with a summary of the principles of detection and materials used in the sensing units. E-tongues are sensor arrays capable of distinguishing very similar liquids employing the concept of global selectivity, where the difference in the electrical response of different materials serves as a fingerprint for the analysed sample. They have been widely used for the analysis of wines, fruit juices, coffee, milk and beverages, in addition to the detection of trace amounts of impurities or pollutants in waters. Among the various principles of detection, electrochemical measurements and impedance spectroscopy are the most prominent. With regard to the materials for the sensing units, in most cases use is made of ultrathin films produced in a layer-by-layer fashion to yield higher sensitivity with the advantage of control of the film molecular architecture. The concept of e-tongues has been extended to biosensing by using sensing units capable of molecular recognition, as in films with immobilized antigens or enzymes with specific recognition for clinical diagnosis. Because the identification of samples is basically a classification task, there has been a trend to use artificial intelligence and information visualization methods to enhance the performance of e-tongues.
    The Analyst 10/2010; 135(10):2481-95. DOI:10.1039/c0an00292e · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of azobenzene-containing polyurethanes (azoPU) was synthesized. The structure of the azoPU and the synthesis process were detected by FTIR and nuclear magnetic resonance (NMR), and the transition temperature was determined by differential scanning calorimetry (DSC). Tensile and cyclic thermomechanical experiment results revealed that excellent mechanical properties, shape fixity (Rf), and shape recovery (Rr) were obtained by the addition of azo to the chain of PU. Rr and Rf of azoPU increased with the increase of hard segment (HS) content. The higher HS content enhanced interaction among polymer chains as the chances of induced dipole–dipole interaction between aromatic rings increased in the presence of azo in the main chain. The materials presented trans-cis isomerization under UV irradiation in addition to the shape memory effect. The UV-vis spectrum indicated that photoisomerization occurred both in solution and solid state. It is expected that the work may be helpful in expanding the application of shape memoryPU in areas of drug release and optical data storage.
    Journal of Materials Chemistry 11/2010; 20(44):9976-9981. DOI:10.1039/C0JM01944E · 7.44 Impact Factor
Show more