A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism

Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, Garching D-85747, Germany.
Nature (Impact Factor: 42.35). 05/2008; 452(7188):755-8. DOI: 10.1038/nature06782
Source: PubMed

ABSTRACT Pathogenic bacteria often use effector molecules to increase virulence. In most cases, the mode of action of effectors remains unknown. Strains of Pseudomonas syringae pv. syringae (Pss) secrete syringolin A (SylA), a product of a mixed non-ribosomal peptide/polyketide synthetase, in planta. Here we identify SylA as a virulence factor because a SylA-negative mutant in Pss strain B728a obtained by gene disruption was markedly less virulent on its host, Phaseolus vulgaris (bean). We show that SylA irreversibly inhibits all three catalytic activities of eukaryotic proteasomes, thus adding proteasome inhibition to the repertoire of modes of action of virulence factors. The crystal structure of the yeast proteasome in complex with SylA revealed a novel mechanism of covalent binding to the catalytic subunits. Thus, SylA defines a new class of proteasome inhibitors that includes glidobactin A (GlbA), a structurally related compound from an unknown species of the order Burkholderiales, for which we demonstrate a similar proteasome inhibition mechanism. As proteasome inhibitors are a promising class of anti-tumour agents, the discovery of a novel family of inhibitory natural products, which we refer to as syrbactins, may also have implications for the development of anti-cancer drugs. Homologues of SylA and GlbA synthetase genes are found in some other pathogenic bacteria, including the human pathogen Burkholderia pseudomallei, the causative agent of melioidosis. It is thus possible that these bacteria are capable of producing proteasome inhibitors of the syrbactin class.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salmonellosis is the most frequent foodborne disease worldwide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs) between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic "warheads" in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide's α,β-unsaturated carbonyl moiety to the thiol group of calpain's catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads.
    Scientific Reports 03/2015; 5:8783. DOI:10.1038/srep08783 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bifunctional phosphinothiourea catalysts have been developed successfully for the highly regio- and enantioselective γ-hydroamination of allenyl and propargyl esters with N-methoxy carbamate nucleophiles to yield α,β-unsaturated γ-amino acid ester products. In the case of propargyl ester substrates, the reac-tion proceeds through reversible phosphinothiourea-catalyzed isomerization to the corresponding allenyl ester. The high enantioselectivity of the process is attributed to a cooperative conjugate addition of a thiourea-bound carbamate anion to a vinyl phosphonium ion resulting from covalent activation of the allenyl ester substrate.
    Journal of the American Chemical Society 12/2014; DOI:10.1021/ja5117638 · 11.44 Impact Factor