In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses.

Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA.
Journal of Virology (Impact Factor: 4.65). 07/2008; 82(12):5887-911. DOI: 10.1128/JVI.00254-08
Source: PubMed

ABSTRACT Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications.


Available from: Mark A Kay, Aug 14, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Directed evolution of adeno-associated virus (AAV) through successive rounds of phenotypic selection is a powerful method to isolate variants with improved properties from large libraries of capsid mutants. Importantly, AAV libraries used for directed evolution are based on the "natural" AAV genome organization where the capsid proteins are encoded in cis from replicating genomes. This is necessary to allow the recovery of the capsid DNA after each step of phenotypic selection. For directed evolution to be used successfully it is essential to minimize the random mixing of capsomers and the encapsidation of non-matching viral genomes during the production of the viral libraries. Here, we demonstrate that multiple AAV capsid variants expressed from Rep/Cap containing viral genomes result in near-homogeneous capsids that display an unexpectedly high capsid-DNA correlation. Next-generation sequencing of AAV progeny generated by bulk transfection of a semi-random peptide library showed a strong counter-selection of capsid variants encoding premature stop codons, which further supports a strong capsid-genome identity correlation. Overall, our observations demonstrate that production of "natural" AAVs results in low capsid mosaicism and high capsid-genome correlation. These unique properties allow the production of highly diverse AAV libraries in a one-step procedure with a minimal loss in phenotype-genotype correlation.Molecular Therapy (2015); doi:10.1038/mt.2015.3.
    Molecular Therapy 01/2015; DOI:10.1038/mt.2015.3 · 6.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A - a lipid-droplet-associated protein - resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo.
    PLoS ONE 12/2014; 9(12):e116288. DOI:10.1371/journal.pone.0116288 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adaptation of the CRISPR/Cas9 DNA engineering machinery for mammalian cells has revolutionized our approaches to low- or high-throughput genome annotation and paved the way for conceptually novel therapeutic strategies. A large part of the attraction of CRISPR stems from the small size of its two core components - Cas9 and gRNA - and hence its compatibility with virtually any available viral vector delivery system. As a result, over the past two years, four major classes of viral vectors have already been engineered and applied as CRISPR delivery tools - retroviruses, lentiviruses, adenoviruses, and adeno-associated viruses (AAVs). The juxtaposition of these two technologies reflects a case of tremendous mutual attraction and holds unprecedented promises for biology and medicine. Here, we provide an overview of the state-of-the-art of this rapidly emerging field, from a comparative description of the principal vector designs, to a synopsis of some of the most exciting applications that were reported to date, including the use of viral CRISPR vectors for genome-wide loss-of-function screens, multiplexed gene editing or disease modeling in animals. Once specificity and safety have been improved further, viral vector-mediated in vitro/in vivo CRISPR delivery and expression promise to radically transform basic and applied biomedical research. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Biotechnology Journal 02/2015; 10(2). DOI:10.1002/biot.201400529 · 3.71 Impact Factor