During herpes simplex virus type 1 infection of rabbits, the ability to express the latency-associated transcript increases latent-phase transcription of lytic genes.

Department of Molecular Genetics and Microbiology, Box 100266, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA.
Journal of Virology (Impact Factor: 4.65). 07/2008; 82(12):6056-60. DOI: 10.1128/JVI.02661-07
Source: PubMed

ABSTRACT Trigeminal ganglia (TG) from rabbits latently infected with either wild-type herpes simplex virus type 1 (HSV-1) or the latency-associated transcript (LAT) promoter deletion mutant 17DeltaPst were assessed for their viral chromatin profile and transcript abundance. The wild-type 17syn+ genomes were more enriched in the transcriptionally permissive mark dimethyl H3 K4 than were the 17DeltaPst genomes at the 5' exon and ICP0 and ICP27 promoters. Reverse transcription-PCR analysis revealed significantly more ICP4, tk, and glycoprotein C lytic transcripts in 17syn+ than in 17DeltaPst. These results suggest that, for efficient reactivation from latency in rabbits, the LAT is important for increased transcription of lytic genes during latency.


Available from: Dacia L Kwiatkowski, Apr 21, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that this state is not entirely quiescent. Alternatively, these findings can be interpreted as signs of a low, but constant level of abortive reactivation punctuating otherwise silent latency. Using single cell analysis of transcription in mouse dorsal root ganglia, we reveal that HSV-1 latency is highly dynamic in the majority of neurons. Specifically, transcription from areas of the HSV genome associated with at least one viral lytic gene occurs in nearly two thirds of latently-infected neurons and more than half of these have RNA from more than one lytic gene locus. Further, bioinformatics analyses of host transcription showed that progressive appearance of these lytic transcripts correlated with alterations in expression of cellular genes. These data show for the first time that transcription consistent with lytic gene expression is a frequent event, taking place in the majority of HSV latently-infected neurons. Furthermore, this transcription is of biological significance in that it influences host gene expression. We suggest that the maintenance of HSV latency involves an active host response to frequent viral activity.
    PLoS Pathogens 07/2014; 10(7):e1004237. DOI:10.1371/journal.ppat.1004237 · 8.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After infecting peripheral sites, herpes simplex virus (HSV) invades the nervous system and initiates latent infection in sensory neurons. Establishment and maintenance of HSV latency require host survival, and entail repression of productive cycle ("lytic") viral gene expression. We find that a neuron-specific microRNA, miR-138, represses expression of ICP0, a viral transactivator of lytic gene expression. A mutant HSV-1 (M138) with disrupted miR-138 target sites in ICP0 mRNA exhibits enhanced expression of ICP0 and other lytic proteins in infected neuronal cells in culture. Following corneal inoculation, M138-infected mice have higher levels of ICP0 and lytic transcripts in trigeminal ganglia during establishment of latency, and exhibit increased mortality and encephalitis symptoms. After full establishment of latency, the fraction of trigeminal ganglia harboring detectable lytic transcripts is greater in M138-infected mice. Thus, miR-138 is a neuronal factor that represses HSV-1 lytic gene expression, promoting host survival and viral latency.
    Cell host & microbe 04/2014; 15(4):446-56. DOI:10.1016/j.chom.2014.03.004 · 12.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.