Article

Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study.

University of Glasgow, Glasgow, United Kingdom.
Journal of the American College of Cardiology (Impact Factor: 15.34). 04/2008; 51(15):1448-54. DOI: 10.1016/j.jacc.2007.11.072
Source: PubMed

ABSTRACT This subanalysis of the TNT (Treating to New Targets) study investigates the effects of intensive lipid lowering with atorvastatin in patients with coronary heart disease (CHD) with and without pre-existing chronic kidney disease (CKD).
Cardiovascular disease is a major cause of morbidity and mortality in patients with CKD.
A total of 10,001 patients with CHD were randomized to double-blind therapy with atorvastatin 80 mg/day or 10 mg/day. Patients with CKD were identified at baseline on the basis of an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m(2) using the Modification of Diet in Renal Disease equation. The primary efficacy outcome was time to first major cardiovascular event.
Of 9,656 patients with complete renal data, 3,107 had CKD at baseline and demonstrated greater cardiovascular comorbidity than those with normal eGFR (n = 6,549). After a median follow-up of 5.0 years, 351 patients with CKD (11.3%) experienced a major cardiovascular event, compared with 561 patients with normal eGFR (8.6%) (hazard ratio [HR] = 1.35; 95% confidence interval [CI] 1.18 to 1.54; p < 0.0001). Compared with atorvastatin 10 mg, atorvastatin 80 mg reduced the relative risk of major cardiovascular events by 32% in patients with CKD (HR = 0.68; 95% CI 0.55 to 0.84; p = 0.0003) and 15% in patients with normal eGFR (HR = 0.85; 95% CI 0.72 to 1.00; p = 0.049). Both doses of atorvastatin were well tolerated in patients with CKD.
Aggressive lipid lowering with atorvastatin 80 mg was both safe and effective in reducing the excess of cardiovascular events in a high-risk population with CKD and CHD.

0 Bookmarks
 · 
196 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation has been recognised to both decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can affect beta cell function directly leading to secretory dysfunction and increased apoptosis. These cytokines can also indirectly affect beta cell function by increasing adipocyte inflammation.The resulting glucotoxicity and lipotoxicity further enhance the inflammatory process resulting in a vicious cycle. Weight reduction and drugs such as metformin have been shown to decrease the levels of C-Reactive Protein by 31% and 13%, respectively. Pioglitazone, insulin and statins have anti-inflammatory effects. Interleukin 1 and tumor necrosis factor-α antagonists are in trials and NSAIDs such as salsalate have shown an improvement in insulin sensitivity. Inhibition of 12-lipo-oxygenase, histone de-acetylases, and activation of sirtuin-1 are upcoming molecular targets to reduce inflammation. These therapies have also been shown to decrease the conversion of pre-diabetes state to diabetes. Drugs like glicazide, troglitazone, N-acetylcysteine and selective COX-2 inhibitors have shown benefit in diabetic neuropathy by decreasing inflammatory markers. Retinopathy drugs are used to target vascular endothelial growth factor, angiopoietin-2, various proteinases and chemokines. Drugs targeting the proteinases and various chemokines are pentoxifylline, inhibitors of nuclear factor-kappa B and mammalian target of rapamycin and are in clinical trials for diabetic nephropathy. Commonly used drugs such as insulin, metformin, peroxisome proliferator-activated receptors, glucagon like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors also decrease inflammation. Anti-inflammatory therapies represent a potential approach for the therapy of diabetes and its complications.
    World journal of diabetes. 10/2014; 5(5):697-710.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Four practice-based research networks (PBRNs) participated in a study to determine whether networks could increase dissemination, implementation, and diffusion of evidence-based treatment guidelines for chronic kidney disease by leveraging early adopter practices.Methods Motivated practices from four PBRNs received baseline and periodic performance feedback, academic detailing, and weekly practice facilitation for 6 months during wave I of the study. Each wave I practice then recruited two additional practices (wave II), which received performance feedback and academic detailing and participated in monthly local learning collaboratives led by the wave I clinicians. They received only monthly practice facilitation. The primary outcomes were adherence to primary care-relevant process-of-care recommendations from the National Kidney Foundation Kidney Disease Outcomes Quality Initiative Guidelines. Performance was determined retrospectively by medical records abstraction. Practice priority, change capacity, and care process content were measured before and after the interventions.ResultsFollowing the intervention, wave I practices increased the use of ACEIs/ARBs, discontinuation of NSAIDs, testing for anemia, and testing and/or treatment for vitamin D deficiency. Most were able to recruit two additional practices for wave II, and wave II practices also increased their use of ACEIs/ARBs and testing and/or treatment of vitamin D deficiency.Conclusions With some assistance, early adopter practices can facilitate the diffusion of evidence-based approaches to other practices. PBRNs are well-positioned to replicate this process for other evidence-based innovations.
    Implementation Science 11/2014; 9(1):169. · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Atherosclerosis is a major cause of cardiac events and mortality in patients suffering from chronic kidney disease (CKD). Moreover, the risk of cardiovascular disease (CVD) development in patients with CKD increases as kidney function declines. Although the close connection between atherosclerosis and kidney dysfunction is undeniable, particular risk factors and specific mechanisms that promote CVD in patients with CKD remain unclear. To gain insight into better recognition of the mechanisms of accelerated atherosclerosis in patients with CKD, we performed a comparative proteomic analysis of blood plasma from patients in various stages of CKD and thus distinct progression of atherosclerosis (n¿=¿90), patients with advanced CVD and normal renal function (n¿=¿30) and healthy volunteers (n¿=¿30).Methods Plasma samples were depleted using affinity chromatography and divided into three fractions: high-abundant, low-abundant and low-molecular weight proteins. The first two fractions were analyzed by two-dimensional gel electrophoresis and mass spectrometry, the last one has been subjected to direct MS/MS analysis. A proteomic profiles for high-abundant, low-abundant and low-molecular weight proteins fractions were obtained. Differential accumulated proteins were confirmed by selected reaction monitoring analysis (SRM). The Gene Ontology (GO) function and the interaction networks of differentially expressed proteins were then analyzed.ResultsForty-nine proteins (13 high- and 36 low-molecular mass) showed differences in accumulation levels. For eleven of them differential expression were confirmed by selected reaction monitoring analysis. Bioinformatic analysis showed that identified differential proteins were related to three different processes: the blood coagulation cascade, the transport, binding and metabolism of lipoproteins and inflammatory processes.Conclusions Obtained data provide an additional line of evidence that different molecular mechanisms are involved in the development of CKD- and CVD-related atherosclerosis. The abundance of some anti-atherogenic factors revealed in patients with CKD suggests that these factors are not associated with the reduction of atherosclerosis progression in CKD that is typically observed in ¿classical¿ CVD. Moreover, obtained data also suggest that mechanism of CVD acceleration may be different in initial and advanced stages of CKD. Undoubtedly, in advanced stages of CKD inflammation is highly pronounced.
    Journal of translational medicine. 01/2015; 13(1):20.

Full-text (2 Sources)

Download
64 Downloads
Available from
Jun 4, 2014