Article

Comparison of chemical composition of the essential oil of Laurus nobilis L. leaves and fruits from different regions of Hatay, Turkey.

Department of Chemistry, Mustafa Kemal University, Tayfur Sokmen Campus, Faculty of Arts and Science, Antakya Hatay-31024, Turkey.
Journal of Environmental Biology (Impact Factor: 0.68). 11/2007; 28(4):731-3.
Source: PubMed

ABSTRACT The essential oils of the leaves and fruits from bay (Laurus nobilis L.) grown in Antakya, Yayladagi and Samandagi were isolated by solvent extraction and analysed by capillary gas chromatography (GC), gas chromatography and mass spectrometry (GC/MS). In Antakya, Yayladagi and Samandagi the chemical compositions of the fruits and leaves were similar according to qualitative and quantitative analysis. Although in both fruits and leaves the major component was found to be 1.8-Cineole a concentration of about 50% compared with essential oils. The composition of the essential oil from the leaves has high content of 1.8-Cineole, Sabinene and alpha-Terpinyl acetate, but a low content of a-Pinene, alpha-Phellandrene and trans-/beta-osimen. 1.8-Cineole was found major component of the leaves essential oil collected from Samandagi (59.94%) which is sea coast of region. Interestingly alpha-Pinene, beta-Pinene, alpha-Phellandrene, 1.8-Cineole and trans-beta-osimen were found the major components of fruits of Laurus nobilis L. harvested from Antakya, Yayladagi and Samandagi Trans-beta-osimen was detected as the major component of fruits essential oil collected again from Samandagi (28.35%)

1 Bookmark
 · 
185 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bites Bites of mosquitoes belonging to the genera Anopheles Meigen, Aedes Meigen, Culex L. and Haemagogus L. are a general nuisance and are responsible for the transmission of important tropical diseases such as malaria, hemorrhagic dengue and yellow fevers and filariasis (elephantiasis). Plants are traditional sources of mosquito repelling essential oils (EOs), glyceridic oils and repellent and synergistic chemicals. A Chemical Abstracts search on mosquito repellent inventions containing plant-derived EOs revealed 144 active patents mostly from Asia. Chinese, Japanese and Korean language patents and those of India (in English) accounted for roughly 3/4 of all patents. Since 1998 patents on EO-containing mosquito repellent inventions have almost doubled about every 4 years. In general, these patents describe repellent compositions for use in topical agents, cosmetic products, incense, fumigants, indoor and outdoor sprays, fibers, textiles among other applications. 67 EOs and 9 glyceridic oils were individually cited in at least 2 patents. Over 1/2 of all patents named just one EO. Citronella [Cymbopogon nardus (L.) Rendle, C.winterianus Jowitt ex Bor] and eucalyptus (Eucalyptus LʼHér. spp.) EOs were each cited in approximately 1/3 of all patents. Camphor [Cinnamomum camphora (L.) J. Presl], cinnamon (Cinnamomum zeylanicum Blume), clove [Syzygium aromaticum (L.) Merr. & L.M. Perry], geranium (Pelargonium graveolens LʼHér.), lavender (Lavandula angustifolia Mill.), lemon [Citrus × limon (L.) Osbeck], lemongrass [Cymbopogon citratus (DC.) Stapf] and peppermint (Mentha × piperita L.) EOs were each cited in > 10% of patents. Repellent chemicals present in EO compositions or added as pure “natural” ingredients such as geraniol, limonene, p-menthane-3,8-diol, nepetalactone and vanillin were described in approximately 40% of all patents. About 25% of EO-containing inventions included or were made to be used with synthetic insect control agents having mosquito repellent properties such as pyrethroids, N,N-diethyl-m-toluamide (DEET), (±)-p-menthane-3,8-diol (PMD) and dialkyl phthalates. Synergistic effects involving one or more EOs and synthetic and/or natural components were claimed in about 10% of all patents. Scientific literature sources provide evidence for the mosquito repellency of many of the EOs and individual chemical components found in EOs used in patented repellent inventions.
    Planta Medica 02/2011; 77(6):598-617. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study describes the antioxidant and antimicrobial activity of Laurus nobilis L. and Myrtus communis L. essential oils (EO). This is the first report of the synergistic antimicrobial effect of these EOs in combination with physical food preservation treatments. EOs obtained by steam distillation from aerial parts of Laurus nobilis and Myrtus communis were analysed by using gas chromatography/mass spectrometry. The main compounds were 1,8-cineole and 2-carene (L. nobilis EO); and myrtenyl acetate, 1,8-cineole and α-pinene (M. communis EO). L. nobilis EO showed higher antioxidant activity than M. communis EO in three complementary antioxidant tests. Although antimicrobial activity tests demonstrated the effectiveness of L. nobilis EO and the lack of bactericidal effect of M. communis EO, synergistic lethal effects were observed when combining each EO (0.2 μL mL(-1) ) with mild heat (54 °C/10 min) or high hydrostatic pressure (HHP) (175-400 MPa/20 min). In contrast, combination of EOs with pulsed electric fields (30 kV cm(-1) /25 pulses) showed no additional effects. This study shows the great potential of these EOs in combined treatments with mild heat and HHP to obtain a higher inactivation of foodborne pathogens, which might help in the design of safe processes applied at low intensity.
    Journal of the Science of Food and Agriculture 09/2013; · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t Laurus nobilis essential oils from Tunisia, Algeria and Morocco were analyzed for their chemical composition and assessed for their repellent and toxic activities against two major stored product pests: Rhyzopertha dominica and Tribolium castaneum. The three oils showed quantitative rather than quali-tative differences in their chemical compositions. 1,8-cineole, linalool and isovaleraldehyde, were iden-tified as the major common compounds whereas, a-pinene, a-terpineol, eugenylmethylether, b-pinene, spathulenol and b-myrcene were also well represented in all three oils. Results showed that L. nobilis
    Journal of Stored Products Research 10/2011; · 1.35 Impact Factor

Full-text (2 Sources)

View
1,032 Downloads
Available from
Jun 3, 2014