Article

The transient nature of 2nd-order stereopsis.

McGill Vision Research, Department of Ophthalmology, McGill University, 687 Pine Avenue W (H4-14), Montreal, Que., Canada H3A 1A1.
Vision Research (Impact Factor: 2.14). 06/2008; 48(11):1327-34. DOI: 10.1016/j.visres.2008.02.008
Source: PubMed

ABSTRACT There are currently two competing dichotomies used to describe how local stereoscopic information is processed by the human visual system. The first is in terms of the type of the spatial filtering operations used to extract relevant image features prior to stereoscopic analysis (i.e. 1st- vs 2nd-order stereo; [Hess, R. F., & Wilcox, L. M. (1994). Linear and non-linear filtering in stereopsis. Vision Research, 34, 2431-2438]). The second is in terms of the temporal properties of the mechanisms used to process stereoscopic information (i.e. sustained vs transient stereo; [Schor, C. M., Edwards, M., & Pope, D. R. (1998). Spatial-frequency and contrast tuning of the transient-stereopsis system. Vision Research, 38(20), 3057-3068]). Here we compare the dynamics of 1st- and 2nd-order stereopsis using several types of stimuli and find a clear dissociation in which 1st-order stimuli exhibit sustained properties while 2nd-order patterns show more transient properties. Our results and analyses unify and simplify two complimentary bodies of work.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (1) To devise a model-based method for estimating the probabilities of binocular fusion, interocular suppression and diplopia from psychophysical judgements, (2) To map out the way fusion, suppression and diplopia vary with binocular disparity and blur of single edges shown to each eye, (3) To compare the binocular interactions found for edges of the same vs opposite contrast polarity. Test images were single, horizontal, Gaussian-blurred edges, with blur B = 1-32 min arc, and vertical disparity 0-8.B, shown for 200 ms. In the main experiment, observers reported whether they saw one central edge, one offset edge, or two edges. We argue that the relation between these three response categories and the three perceptual states (fusion, suppression, diplopia) is indirect and likely to be distorted by positional noise and criterion effects, and so we developed a descriptive, probabilistic model to estimate both the perceptual states and the noise/criterion parameters from the data. (1) Using simulated data, we validated the model-based method by showing that it recovered fairly accurately the disparity ranges for fusion and suppression, (2) The disparity range for fusion (Panum's limit) increased greatly with blur, in line with previous studies. The disparity range for suppression was similar to the fusion limit at large blurs, but two or three times the fusion limit at small blurs. This meant that diplopia was much more prevalent at larger blurs, (3) Diplopia was much more frequent when the two edges had opposite contrast polarity. A formal comparison of models indicated that fusion occurs for same, but not opposite, polarities. Probability of suppression was greater for unequal contrasts, and it was always the lower-contrast edge that was suppressed. Our model-based data analysis offers a useful tool for probing binocular fusion and suppression psychophysically. The disparity range for fusion increased with edge blur but fell short of complete scale-invariance. The disparity range for suppression also increased with blur but was not close to scale-invariance. Single vision occurs through fusion, but also beyond the fusion range, through suppression. Thus suppression can serve as a mechanism for extending single vision to larger disparities, but mainly for sharper edges where the fusion range is small (5-10 min arc). For large blurs the fusion range is so much larger that no such extension may be needed.
    Ophthalmic and Physiological Optics 01/2014; · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a long history of research into depth percepts from very large disparities, beyond the fusion limit. Such diplopic stimuli have repeatedly been shown to provide reliable depth percepts. A number of researchers have pointed to differences between the processing of small and large disparities, arguing that they are subserved by distinct neural mechanisms. Other studies have pointed to a dichotomy between the processing of 1st- and 2nd-order stimuli. Here we review literature on the full range of disparity processing to determine how well different proposed dichotomies map onto one another, and to identify unresolved issues.
    Vision research 01/2009; · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stereoscopic depth perception is supported by a combination of correlation-based and match-based representations of binocular disparity. It also relies on both transient and sustained temporal channels of the visual system. Previous studies suggest that the relative contribution of the correlation-based representation (over the match-based representation) and the transient channel (over the sustained channel) to depth perception increases with the disparity magnitude. The mechanisms of the correlation-based and match-based representations may receive preferential inputs from the transient and sustained channels, respectively. We examined near/far discrimination by observers using random-dot stereograms refreshed at various rates. The relative contribution of the two representations was inferred by changing the fraction of dots that were contrast reversed between the two eyes. Both representations contributed to depth discrimination over the tested range of refresh rates. As the rate increased, the correlation-based representation increased its contribution to near/far discrimination. Another experiment revealed that the match-based representation was constructed by exploiting the variability in correlation-based disparity signals. Thus, the relative weight of the transient over sustained channel differs between the two representations. The correlation-based representation dominates depth perception with dynamic inputs. The match-based representation, which may be a nonlinear refinement of the correlation-based representation, exerts more influence on depth perception with slower inputs.
    Journal of Vision 01/2013; 13(13). · 2.48 Impact Factor

Full-text (2 Sources)

Download
7 Downloads
Available from
May 23, 2014