Article

Selective adaptation in networks of cortical neurons.

Faculties of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 11/2003; 23(28):9349-56.
Source: PubMed

ABSTRACT A key property of neural systems is their ability to adapt selectively to stimuli with different features. Using multisite electrical recordings from networks of cortical neurons developing ex vivo, we show that neurons adapt selectively to different stimuli invading the network. We focus on selective adaptation to frequent and rare stimuli; networks were stimulated at two sites with two different stimulus frequencies. When both stimuli were presented within the same period, neurons in the network attenuated their responsiveness to the more frequent input, whereas their responsiveness to the rarely delivered stimuli showed a marked average increase. The amplification of the response to rare stimuli required the presence of the other, more frequent stimulation source. By contrast, the decreased response to the frequent stimuli occurred regardless of the presence of the rare stimuli. Analysis of the response of single units suggests that both of these effects are caused by changes in synaptic transmission. By using synaptic blockers, we find that the increased responsiveness to the rarely stimulated site depends specifically on fast GABAergic transmission. Thus, excitatory synaptic depression, the inhibitory sub-network, and their balance play an active role in generating selective gain control. The observation that selective adaptation arises naturally in a network of cortical neurons developing ex vivo indicates that this is an inherent feature of spontaneously organizing cortical networks.

0 Followers
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stimulus-specific adaptation (SSA) is observed in many brain regions in humans and animals. SSA of cortical neurons has been proposed to accumulate through relays in ascending pathways. Here, we examined SSA at the synapse level using whole-cell patch-clamp recordings of primary cultured cortical neurons of the rat. First, we found that cultured neurons had high firing capability with 100-Hz current injection. However, neuron firing started to adapt to repeated electrically activated synaptic inputs at 10 Hz. Next, to activate different dendritic inputs, electrical stimulations were spatially separated. Cultured neurons showed similar SSA properties in the oddball stimulation paradigm compared to those reported in vivo. Single neurons responded preferentially to a deviant stimulus over repeated, standard stimuli considering both synapse-driven spikes and excitatory postsynaptic currents (EPSCs). Compared with two closely placed stimulating electrodes that activated highly overlapping dendritic fields, two separately placed electrodes that activated less overlapping dendritic fields elicited greater SSA. Finally, we used glutamate puffing to directly activate postsynaptic glutamate receptors. Neurons showed SSA to two separately placed puffs repeated at 10 Hz. Compared with EPSCs, GABAa receptor-mediated inhibitory postsynaptic currents showed weaker SSA. Heterogeneity of the synaptic inputs was critical for producing SSA, with glutamate receptor desensitization participating in the process. Our findings suggest that postsynaptic fatigue contributes largely to SSA at low frequencies.
    PLoS ONE 12/2014; 9(12):e114537. DOI:10.1371/journal.pone.0114537 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should "trigger" the network's response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex.
    Frontiers in Systems Neuroscience 01/2015; 9:19. DOI:10.3389/fnsys.2015.00019
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensory neurons are often described in terms of a receptive field, that is, a linear kernel through which stimuli are filtered before they are further processed. If information transmission is assumed to proceed in a feedforward cascade, the receptive field may be interpreted as the external stimulus' profile maximizing neuronal output. The nervous system, however, contains many feedback loops, and sensory neurons filter more currents than the ones representing the transduced external stimulus. Some of the additional currents are generated by the output activity of the neuron itself, and therefore constitute feedback signals. By means of a time-frequency analysis of the input/output transformation, here we show how feedback modifies the receptive field. The model is applicable to various types of feedback processes, from spike-triggered intrinsic conductances to inhibitory synaptic inputs from nearby neurons. We distinguish between the intrinsic receptive field (filtering all input currents) and the effective receptive field (filtering only external stimuli). Whereas the intrinsic receptive field summarizes the biophysical properties of the neuron associated to subthreshold integration and spike generation, only the effective receptive field can be interpreted as the external stimulus' profile maximizing neuronal output. We demonstrate that spike-triggered feedback shifts low-pass filtering towards band-pass processing, transforming integrator neurons into resonators. For strong feedback, a sharp resonance in the spectral neuronal selectivity may appear. Our results provide a unified framework to interpret a collection of previous experimental studies where specific feedback mechanisms were shown to modify the filtering properties of neurons.
    Journal of Computational Neuroscience 01/2015; 38(2). DOI:10.1007/s10827-014-0546-0 · 2.09 Impact Factor

Full-text (2 Sources)

Download
11 Downloads
Available from
Sep 17, 2014