Article

Heat acclimation and cross-tolerance against anoxia in Arabidopsis.

Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy.
Plant Cell and Environment (Impact Factor: 5.91). 08/2008; 31(7):1029-37. DOI: 10.1111/j.1365-3040.2008.01816.x
Source: PubMed

ABSTRACT Arabidopsis seedlings are highly sensitive to low oxygen and they die rapidly when exposed to anoxia. Tolerance to anoxia depends on the ability to efficiently use carbohydrates through the fermentative pathway, as highlighted by the lower tolerance displayed by a mutant devoid of alcohol dehydrogenase. Other mechanisms of tolerance are also possible and may include a role for heat-induced genes. In fact, heat shock proteins (HSPs) are induced by anoxia. This suggests that there may be a cross-adaptation mechanism between heat and anoxic stress, and in this work, we studied the acclimation of Arabidopsis seedlings both to low oxygen and heat. The results show that seedlings subjected to hypoxia or heat pretreatment survive anoxia much better. Interestingly, we also observed an increased anoxia tolerance in heat-treated alcohol dehydrogenase (adh) mutant plants. On the other hand, anoxic pretreatment does not confer tolerance to heat stress. The success of the induction of HSPs by anoxia is in direct relation to the amount of sucrose available, and this in turn relates to how well seedlings will survive under anoxia. HSP transcripts were also detected during seed development and germination, two hypoxia-prone processes, suggesting that hypoxia-induced HSP expression is physiologically relevant.

0 Bookmarks
 · 
185 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Jatropha (Jatropha curcas) is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq). The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.
    Frontiers in Plant Science 12/2014; 5(658). · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1-100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the "same" material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles.
    Dose-Response 05/2014; 12(2):202-32. · 1.23 Impact Factor
  • Source
    Temperature. 06/2014; 1(2):107-114.

Full-text (2 Sources)

Download
45 Downloads
Available from
May 22, 2014