Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation.

Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
Genes & Development (Impact Factor: 12.64). 05/2008; 22(8):998-1010. DOI: 10.1101/gad.1632208
Source: PubMed

ABSTRACT The apoptosis-modulating protein Daxx functions as a transcriptional repressor that binds to and suppresses the activity of nuclear factor-kappaB member RelB, among other transcription factors. The mechanism by which Daxx represses RelB target genes remains elusive. In this report, we demonstrate that Daxx controls epigenetic silencing of RelB target genes by DNA methylation. Daxx potently represses the RelB target genes dapk1, dapk3, c-flip, and birc3 (ciap2) at both the mRNA and protein levels. Recruitment of Daxx to target gene promoters, and its ability to repress them, is RelB-dependent, as shown by experiments using relB(-/-) cells. Importantly, methylation of target promoters is decreased in daxx(-/-) cells compared with daxx(+/+) cells, and stable transfection of daxx(-/-) cells with Daxx restores DNA methylation. Furthermore, Daxx recruits DNA methyl transferase 1 (Dnmt1) to target promoters, resulting in synergistic repression. The observation that Daxx functions to target DNA methyltransferases onto RelB target sites in the genome provides a rare example of a gene-specific mechanism for epigenetic silencing. Given the documented role of several of the RelB-regulated genes in diseases, particularly cancer, the findings have implications for developing therapeutic strategies based on epigenetic-modifying drugs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is a cell death programme primordial to cellular homeostasis efficiency. This normal cell suicide program is the result of the activation of a cascade of events in response to death stimuli. Apoptosis occurs in normal cells to maintain a balance between cell proliferation and cell death. A deregulation of this balance due to modifications in the apoptosic pathway leads to different human diseases including cancers. Apoptosis resistance is one of the most important hallmarks of cancer and some new therapeutical strategies focus on inducing cell death in cancer cells. Nevertheless, cancer cells are resistant to treatment inducing cell death because of different mechanisms, such as DNA mutations in gene coding for pro-apoptotic proteins, increased expression of anti-apoptotic proteins and/or pro-survival signals, or pro-apoptic gene silencing mediated by DNA hypermethylation. In this context, aberrant DNA methylation patterns, hypermethylation and hypomethylation of gene coding for proteins implicated in apoptotic pathways are possible causes of cancer cell resistance. This review highlights the role of DNA methylation of apoptosis-related genes in cancer cell resistance.
    Cells. 09/2013; 2(3):545-73.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imbalanced cell death is a common phenomenon in many human diseases, including cancer. DAPK's essential function is in promoting apoptosis. DAPK interacts with stress-induced receptors through its death domain to initiate an apoptosis cascade. In addition, DAPK phosphorylates multiple cytosolic substrates and can mediate transfer of signaling pathways to the effector caspases. A series of studies demonstrated that, depending on stimuli, DAPK expression is regulated on both the transcriptional and posttranscriptional levels. Silencing of DAPK due to hypermethylation of its promoter was reported in many types of cancer. STAT3 and p52-NFkB transcription factors have been shown to down-regulate DAPK expression. In contrast, p53, C/EBP-β and Smad transcription factors bind to their specific response elements within the DAPK promoter and induce its transcription. Post-transcriptionally, DAPK undergoes alternative splicing, which results in the production of two functionally different isoforms. Moreover, miRNA 103 and miRNA 107 recently were shown to inhibit DAPK in colorectal cancer. Here we summarize our recent knowledge about transcriptional regulation of DAPK expression.
    Apoptosis 11/2013; · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TNFα is a potent cytokine that plays a critical role in numerous cellular processes, particularly immune and inflammatory responses, programmed cell death, angiogenesis, and cell migration. Thus, understanding the molecular mechanisms that mediate TNFα-induced cellular responses is a crucial issue. It is generally accepted that global DNA binding activity of the NF-κB avian reticuloendotheliosis viral (v-rel) oncogene related B (RelB) subunit is not induced upon TNFα treatment in fibroblasts, despite its TNFα-induced nuclear accumulation. Here, we demonstrate that RelB plays a critical role in promoting fibroblast migration upon prolonged TNFα treatment. We identified the two kinases IκB kinase α (IKKα) and IκB kinase β (IKKβ) as RelB interacting partners whose activation by TNFα promotes RelB phosphorylation at serine 472. Once phosphorylated on serine 472, nuclear RelB dissociates from its interaction with the inhibitory protein IκBα and binds to the promoter of critical migration-associated genes, such as the matrix metallopeptidase 3 (MMP3). Further, we show that RelB serine 472 phosphorylation status controls MMP3 expression and promigration activity downstream of TNF receptors. Our findings provide new insights into the regulation of RelB activity and reveal a novel link between selective NF-κB target gene expression and cellular response in response to TNFα.
    Proceedings of the National Academy of Sciences 09/2014; · 9.81 Impact Factor


Available from