Article

A dual task for the Xbp1-responsive OS-9 variants in the mammalian endoplasmic reticulum - Inhibiting secretion of misfolded protein conformers and enhancing their disposal

Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2008; 283(24):16446-54. DOI: 10.1074/jbc.M802272200
Source: PubMed

ABSTRACT Normally, non-native polypeptides are not transported through the secretory pathway. Rather, they are translocated from the endoplasmic reticulum (ER) lumen into the cytosol where they are degraded by proteasomes. Here we characterize the function in ER quality control of two proteins derived from alternative splicing of the OS-9 gene. OS-9.1 and OS-9.2 are ubiquitously expressed in human tissues and are amplified in tumors. They are transcriptionally induced upon activation of the Ire1/Xbp1 ER-stress pathway. OS-9 variants do not associate with folding-competent proteins. Rather, they selectively bind folding-defective ones thereby inhibiting transport of non-native conformers through the secretory pathway. The intralumenal level of OS-9.1 and OS-9.2 inversely correlates with the fraction of a folding-defective glycoprotein, the Null(hong kong) (NHK) variant of alpha1-antitrypsin that escapes retention-based ER quality control. OS-9 up-regulation does not affect NHK disposal, but reduction of the intralumenal level of OS-9.1 and OS-9.2 substantially delays disposal of this model substrate. OS-9.1 and OS-9.2 also associate transiently with non-glycosylated folding-defective proteins, but association is unproductive. Finally, OS-9 activity does not require an intact mannose 6-P homology domain. Thus, OS-9.1 and OS-9.2 play a dual role in mammalian ER quality control: first as crucial retention factors for misfolded conformers, and second as promoters of protein disposal from the ER lumen.

0 Followers
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been 2476 characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.
    Molecules 01/2015; 20(2):2475-2491. DOI:10.3390/molecules20022475 · 2.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: N-glycosylation in the endoplasmic reticulum (ER) consists of the transfer of a preassembled glycan conserved among species (Glc3Man9GlcNAc2) from a lipid donor to a consensus sequence within a nascent protein that is entering the ER. The protein-linked glycans are then processed by glycosidases and glycosyltransferases in the ER producing specific structures that serve as signalling molecules for the fate of the folding glycoprotein: to stay in the ER during the folding process, to be retrotranslocated to the cytosol for proteasomal degradation if irreversibly misfolded, or to pursue transit through the secretory pathway as a mature glycoprotein. In the ER, each glycan signalling structure is recognized by a specific lectin. A domain similar to that of the mannose 6-phosphate receptors (MPRs) has been identified in several proteins of the secretory pathway. These include the beta subunit of glucosidase II (GII), a key enzyme in the early processing of the transferred glycan that removes middle and innermost glucoses and is involved in quality control of glycoprotein folding in the ER (QC), the lectins OS-9 and XTP3-B, proteins involved in the delivery of ER misfolded proteins to degradation (ERAD), the gamma subunit of the Golgi GlcNAc-1-phosphotransferase, an enzyme involved in generating the mannose 6-phosphate (M6P) signal for sorting acidic hydrolases to lysosomes, and finally the MPRs that deliver those hydrolytic enzymes to the lysosome. Each of the MRH-containing proteins recognizes a different signalling N-glycan structure. Three-dimensional structures of some of the MRH domains have been solved, providing the basis to understand recognition mechanisms.
    Current Protein and Peptide Science 01/2015; 16(1):31-48. · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.
    PLoS ONE 10(3):e0119864. DOI:10.1371/journal.pone.0119864 · 3.53 Impact Factor

Full-text

Download
38 Downloads
Available from
May 21, 2014