Article

Microfibril-associate glycoprotein-2 (MAGP-2) promotes angiogenic cell sprouting by blocking notch signaling in endothelial cells.

Department of Life Sciences, 600 Chestnut St., Indiana State University, Terre Haute, IN 47809, USA.
Microvascular Research (Impact Factor: 2.43). 06/2008; 76(1):7-14. DOI: 10.1016/j.mvr.2008.01.001
Source: PubMed

ABSTRACT Angiogenesis is highly sensitive to the composition of the vascular microenvironment, however, our understanding of the structural and matricellular components of the vascular microenvironment that regulate angiogenesis and the molecular mechanisms by which these molecules function remains incomplete. Our previous results described a novel pro-angiogenic activity for Microfibril-Associated Glycoprotein-2 (MAGP-2), but did not address the molecular mechanism(s) by which this is accomplished. We now demonstrate that MAGP-2 promotes angiogenic cell sprouting by antagonizing Notch signaling pathways in endothelial cells. MAGP-2 decreased basal and Jagged1 induced expression from the Notch sensitive Hes-1 promoter in ECs, and blocked Jagged1 stimulated Notch1 receptor processing in transiently transfected 293T cells. Interestingly, inhibition of Notch signaling by MAGP-2 seems to be restricted to ECs since MAGP-2 increased Hes-1 promoter activity and Notch1 receptor processing in heterologous cell types. Importantly, constitutive activation of the Notch signaling pathway blocked the ability of MAGP-2 to promote angiogenic cell sprouting, as well as morphological changes associated with angiogenesis. Collectively, these observations indicate that MAGP-2 promotes angiogenic cell spouting in vitro by antagonizing Notch signaling pathways in ECs.

0 Bookmarks
 · 
200 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regeneration of functional small diameter blood vessels still remains a challenge, as the synthetic vascular grafts fail to mimic the complex structural architecture and dynamic functions of blood vessels and also lack with the lack of non-thrombogenicity. Although, the existence of nanofibrous extracellular matrix components in the native tissue promotes many physical and molecular signals to the endothelial cells for the regulation of morphogenesis, homeostasis, and cellular functions in vascular tissue, poor understanding of the structural architecture on the functional activation of appropriate genes limits the development of successful vascular graft design. Hence, the present review outlines the functional contributions of various nanofibrous extracellular matrix components in native blood vessels. Further, the review focuses on the role of nanofiber topography of biomaterial scaffolds in endothelial cell fate processes such as adhesion, proliferation, migration, and infiltration with the expression of vasculature specific genes; thereby allowing the reader to envisage the communication between the nano-architecture of scaffolds and endothelial cells in engineering small diameter vascular grafts.
    Biotechnology Journal 01/2015; 10(1). · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An abundance of microfibril-associated glycoprotein 3-like (MFAP3L) significantly correlates with distant metastasis in colorectal cancer (CRC), although the mechanism has yet to be explained. In this study, we observed that MFAP3L knock-down resulted in reduced CRC cell invasion and hepatic metastasis. We evaluated the cellular location and biochemical functions of MFAP3L and found that this protein was primarily localized in the nucleus of CRC cells and acted as a protein kinase. When EGFR translocated into the nucleus upon stimulation with EGF, MFAP3L was phosphorylated at Tyr287 within its SH2 motif, and the activated form of MFAP3L phosphorylated ERK2 at Thr185 and Tyr187. Moreover, the metastatic behavior of CRC cells in vitro and in vivo could be partially explained by activation of the nuclear ERK pathway through MFAP3L phosphorylation. Hence, we experimentally demonstrated for the first time that MFAP3L likely participates in the nuclear signaling of EGFR and ERK2 and acts as a novel nuclear kinase that impacts CRC metastasis.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MAGP2 is a small extracellular protein with both tumor angiogenesis and cell signaling activity. MAGP2 was originally isolated biochemically from microfibril-rich connective tissue. The localization of MAGP2 to microfibrils has been confirmed by both immunohistochemistry and immunogold electron microscopy. Whether MAGP2 binding to microfibrils is regulated post-translationally is still unclear, however, and a better understanding of this process would be instructive to understanding the angiogenesis and signaling functions ascribed to MAGP2. Here we show via immunofluorescence studies that the T3 cell line, derived from ovarian mouse tumor cells, produces abundant fibrillin-2 microfibrils to which MAGP2 can bind. Co-localization of MAGP2 and fibrillin-2 can be detected either when MAGP2 is overexpressed in, or exogenously introduced to, the cells. As expected, matrix association of MAGP2 required its conserved Matrix Binding Domain. Matrix association was positively regulated by proprotein convertase (PC) cleavage of MAGP2; mutation of the MAGP2 PC consensus site reduced the amount of matrix-associated MAGP2. Deletion analysis of the C-terminal 20-amino acid domain that is defined by the PC cleavage site suggests this domain also positively modulates matrix localization of MAGP2, in a manner that requires the amino-terminal half of the protein. Together, our data indicate that matrix localization of MAGP2 by its Matrix Binding Domain is promoted by PC cleavage and the presence of its C-terminal 20 amino acids.
    Matrix Biology 08/2014; · 3.65 Impact Factor

Full-text (2 Sources)

Download
54 Downloads
Available from
Jun 1, 2014