Impaired fear memory, altered object memory and modified hippocampal synaptic plasticity in split-brain mice.

University of Alberta School of Medicine, Department of Physiology, Edmonton, Alberta, Canada T6G 2H7.
Brain Research (Impact Factor: 2.83). 06/2008; 1210:179-88. DOI: 10.1016/j.brainres.2008.03.008
Source: PubMed

ABSTRACT The hippocampus is critical for memory formation. However, the contributions of the hippocampal commissure (HC) and the corpus callosum (CC) are less clear. To elucidate the role of the forebrain commissures in learning and memory, we performed a behavioural and electrophysiological characterization of an inbred mouse strain that displays agenesis of the CC and congenitally reduced HC (BTBR T+ tf/J; 'BTBR'). Compared to a control strain, BTBR mice have severely impaired contextual fear memory, with normal object recognition memory. Interestingly, continuous environmental "enrichment" significantly increased object recognition in BTBR, but not in control C57BL/6 ('BL/6') mice. In area CA1 of hippocampal slices, BTBR displayed intact expression of long-term potentiation (LTP), paired-pulse facilitation (PPF) and basal synaptic transmission, compared to BL/6 mice. However, BTBR hippocampal slices show an increased susceptibility to depotentiation (DPT), an activity-induced reversal of LTP. We conclude that the HC and CC are critical for some forms of hippocampal memory and for synaptic resistance to DPT. Agenesis of the CC and HC may unmask some latent ability to encode, store or retrieve certain forms of recognition memory. We suggest that the increased susceptibility to DPT in BTBR may underlie the memory phenotype reported here.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A significant proportion of patients with autism exhibit some degree of intellectual disability. The BTBR T(+) Itpr3(tf)/J mouse strain exhibits behaviors that align with the major diagnostic criteria of autism. To further evaluate the BTBR strain's cognitive impairments, we quantified hippocampus-dependent object location memory (OLM) and found that one-third of the BTBR mice exhibited robust memory while the remainder did not. Fluorescence deconvolution tomography was used to test if synaptic levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), a protein that contributes importantly to plasticity, correlate with OLM scores in individual mice. In hippocampal field CA1, the BTBRs had fewer post-synaptic densities associated with high levels of phosphorylated (p-) ERK1/2 as compared to C57BL/6 mice. Although counts of p-ERK1/2 immunoreactive synapses did not correlate with OLM performance, the intensity of synaptic p-ERK1/2 immunolabeling was negatively correlated with OLM scores across BTBRs. Metabotropic glutamate receptor (mGluR) 5 signaling activates ERK1/2. Therefore, we tested if treatment with the mGluR5 antagonist MPEP normalizes synaptic and learning measures in BTBR mice: MPEP facilitated OLM and decreased synaptic p-ERK1/2 immunolabeling intensity without affecting numbers of p-ERK1/2+ synapses. In contrast, semi-chronic ampakine treatment, which facilitates memory in other models of cognitive impairment, had no effect on OLM in BTBRs. These results suggest that intellectual disabilities associated with different neurodevelopmental disorders on the autism spectrum require distinct therapeutic strategies based on underlying synaptic pathology.Neuropsychopharmacology accepted article preview online, 22 January 2014. doi:10.1038/npp.2014.13.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 01/2014; · 8.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxytocin (OT) is a neuropeptide involved in mammalian social behavior. It is currently in clinical trials for the treatment of autism spectrum disorder (ASD). Previous studies in healthy rodents (prairie voles and C57BL/6J mice) have shown that there may be detrimental effects of long-term intranasal administration, raising the questions about safety and efficacy. To investigate the effects of OT on the aspects of ASD phenotype, we conducted the first study of chronic intranasal OT in a well-validated mouse model of autism, the BTBR T+ Itpr3tf/J inbred strain (BTBR), which displays low sociability and high repetitive behaviors. BTBR and C57BL/6J (B6) mice (N=94) were administered 0.8 IU/kg of OT intranasally, daily for 30 days, starting on day 21. We ran a well-characterized set of behavioral tasks relevant to diagnostic and associated symptoms of autism, including juvenile reciprocal social interactions, three-chambered social approach, open-field exploratory activity, repetitive self-grooming and fear-conditioned learning and memory, some during and some post treatment. Intranasal OT did not improve autism-relevant behaviors in BTBR, except for female sniffing in the three-chambered social interaction test. Male saline-treated BTBR mice showed increased interest in a novel mouse, both in chamber time and sniffing time, whereas OT-treated male BTBR mice showed a preference for the novel mouse in sniffing time only. No deleterious effects of OT were detected in either B6 or BTBR mice, except possibly for the lack of a preference for the novel mouse's chamber in OT-treated male BTBR mice. These results highlight the complexity inherent in understanding the effects of OT on behavior. Future investigations of chronic intranasal OT should include a wider dose range and early developmental time points in both healthy rodents and ASD models to affirm the efficacy and safety of OT.
    Translational psychiatry. 11/2014; 4:e480.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) may arise from increased ratio of excitatory to inhibitory neurotransmission in the brain. Many pharmacological treatments have been tested in ASD, but only limited success has been achieved. Here we report that BTBR T(+)Itpr3(tf)/J (BTBR) mice, a model of idiopathic autism, have reduced spontaneous GABAergic neurotransmission. Treatment with low nonsedating/nonanxiolytic doses of benzodiazepines, which increase inhibitory neurotransmission through positive allosteric modulation of postsynaptic GABAA receptors, improved deficits in social interaction, repetitive behavior, and spatial learning. Moreover, negative allosteric modulation of GABAA receptors impaired social behavior in C57BL/6J and 129SvJ wild-type mice, suggesting that reduced inhibitory neurotransmission may contribute to social and cognitive deficits. The dramatic behavioral improvement after low-dose benzodiazepine treatment was subunit specific-the α2,3-subunit-selective positive allosteric modulator L-838,417 was effective, but the α1-subunit-selective drug zolpidem exacerbated social deficits. Impaired GABAergic neurotransmission may contribute to ASD, and α2,3-subunit-selective positive GABAA receptor modulation may be an effective treatment.
    Neuron 03/2014; 81(6):1282-9. · 15.77 Impact Factor


Available from