Flagel LE, Udall J, Nettleton D, Wendel J. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6: 16

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
BMC Biology (Impact Factor: 7.98). 02/2008; 6(1):16. DOI: 10.1186/1741-7007-6-16
Source: PubMed


Polyploidy has played a prominent role in shaping the genomic architecture of the angiosperms. Through allopolyploidization, several modern Gossypium (cotton) species contain two divergent, although largely redundant genomes. Owing to this redundancy, these genomes can play host to an array of evolutionary processes that act on duplicate genes.
We compared homoeolog (genes duplicated by polyploidy) contributions to the transcriptome of a natural allopolyploid and a synthetic interspecific F1 hybrid, both derived from a merger between diploid species from the Gossypium A-genome and D-genome groups. Relative levels of A- and D-genome contributions to the petal transcriptome were determined for 1,383 gene pairs. This comparison permitted partitioning of homoeolog expression biases into those arising from genomic merger and those resulting from polyploidy. Within allopolyploid Gossypium, approximately 24% of the genes with biased (unequal contributions from the two homoeologous copies) expression patterns are inferred to have arisen as a consequence of genomic merger, indicating that a substantial fraction of homoeolog expression biases occur instantaneously with hybridization. The remaining 76% of biased homoeologs reflect long-term evolutionary forces, such as duplicate gene neofunctionalization and subfunctionalization. Finally, we observed a greater number of genes biased toward the paternal D-genome and that expression biases have tended to increases during allopolyploid evolution.
Our results indicate that allopolyploidization entails significant homoeolog expression modulation, both immediately as a consequence of genomic merger, and secondarily as a result of long-term evolutionary transformations in duplicate gene expression.

Download full-text


Available from: Joshua A Udall,
  • Source
    • "Differential geneexpression patterns among diploids and tetraploids have been studied to investigate the effects of natural and synthetic polyploidy for novel organ development and resistance to abiotic stresses (Chen and Ni, 2006; Doyle et al., 2008). The molecular basis of evolutionary advantage could be related to gene expression changes, which have been demonstrated in resynthesized polyploids in Arabidopsis (Wang et al., 2006), Brassica (Gaeta et al., 2009), and Gossypium (Flagel et al., 2008). RNA sequencing (RNA-seq) revealed the differential expression of ~50% of paralogues among 18 000 duplicated genes in soybean; the genes showed subfunctionalization on testing seven different tissues (Roulin et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
    Journal of Experimental Botany 12/2014; 66(5). DOI:10.1093/jxb/eru486 · 5.53 Impact Factor
  • Source
    • "In addition, the transcriptomes of two resynthesized hexaploid wheat lines contained more genes showing tetraploid parental dominance than diploid parental dominance [45], though the contributions of A and B homoeoloci could not be separated. Observations in other polyploid species, including cotton [32,76], oilseed rape [73] and Spartina[80], suggest there are both immediate and long term alterations in homoeologous gene expression patterns after polyploidization. We propose that the biased patterns of homoeolocus expression we observed are attributable to coordinated (as opposed to independent) divergence in the regulation of individual homoeolocus expression levels following polyploidization. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.
    BMC Genomics 04/2014; 15(1):276. DOI:10.1186/1471-2164-15-276 · 3.99 Impact Factor
  • Source
    • "The QTL studies reported in the current literature are detecting only a small subset of the genes related to fiber traits that may not cover the whole genome and could be insufficient to conclude which subgenome more significantly contributes to fiber properties [19]. The microarray studies evaluated a limited number of homeologous gene pairs, resulting in limited statistical power [16], [26]. Lacape and coauthors used next generation DNA sequencing technology for fiber transcriptome analysis; however, they evaluated only 617,000 good quality reads from four libraries without biological replication [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G. raimondii) for homeologous gene expression analysis. The majority of homeologous genes, 83.6% according to the reference genome, were expressed during fiber elongation. Our results revealed: 1) approximately two times more genes were induced in the AT subgenome comparing to the DT subgenome in wild type and mutant fiber; 2) the subgenome expression bias was significantly reduced in the Li2 fiber transcriptome; 3) Li2 had a significantly greater effect on the DT than on the AT subgenome. Transcriptional regulators and cell wall homeologous genes significantly affected by the Li2 mutation were reviewed in detail. This is the first report to explore the effects of a single mutation on homeologous gene expression in allotetraploid cotton. These results provide deeper insights into the evolution of allotetraploid cotton gene expression and cotton fiber development.
    PLoS ONE 03/2014; 9(3):e90830. DOI:10.1371/journal.pone.0090830 · 3.23 Impact Factor
Show more