Article

Rotavirus infection accelerates type 1 diabetes in mice with established insulitis.

Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
Journal of Virology (Impact Factor: 4.65). 07/2008; 82(13):6139-49. DOI: 10.1128/JVI.00597-08
Source: PubMed

ABSTRACT Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet beta cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged > or = 12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8(+) T-cell proportions in islets. Levels of beta-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after beta-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of beta cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.

0 Followers
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review type 1 diabetes and host genetic components, as well as epigenetics and viruses associated with type 1 diabetes, with added emphasis on the enteroviruses, which are often associated with triggering the disease. Genus Enterovirus is classified into twelve species of which seven (Enterovirus A, Enterovirus B, Enterovirus C, and Enterovirus D and Rhinovirus A, Rhinovirus B, and Rhinovirus C) are human pathogens. These viruses are transmitted mainly by the fecal-oral route; they may also spread via the nasopharyngeal route. Enterovirus infections are highly prevalent, but these infections are usually subclinical or cause a mild flu-like illness. However, infections caused by enteroviruses can sometimes be serious, with manifestations of meningoencephalitis, paralysis, myocarditis, and in neonates a fulminant sepsis-like syndrome. These viruses are often implicated in chronic (inflammatory) diseases as chronic myocarditis, chronic pancreatitis, and type 1 diabetes. In this review we discuss the currently suggested mechanisms involved in the viral induction of type 1 diabetes. We recapitulate current basic knowledge and definitions.
    12/2014; DOI:10.1155/2014/738512
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotavirus is a ubiquitous double-stranded RNA virus responsible for most cases of infantile gastroenteritis. It infects pancreatic islets in vitro and is implicated as a trigger of autoimmune destruction of islet beta cells leading to type 1 diabetes, but pancreatic pathology secondary to rotavirus infection in vivo has not been documented. To address this issue, we inoculated 3 week-old C57Bl/6 mice at weaning with rhesus rotavirus, which is closely related to human rotaviruses and known to infect mouse islets in vitro. Virus was quantified in tissues by culture-isolation and enzyme-linked immunosorbent assay. A requirement for viral double stranded RNA was investigated in toll-like receptor 3 (TLR3)-deficient mice. Cell proliferation and apoptosis, and insulin expression, were analyzed by immunohistochemistry. Following rotavirus inoculation by gavage, two phases of mild, transient hyperglycemia were observed beginning after 2 and 8 days. In the first phase, widespread apoptosis of pancreatic cells was associated with a decrease in pancreas mass and insulin production, without detectable virus in the pancreas. These effects were mimicked by injection of the double-stranded RNA mimic, polyinosinic-polycytidylic acid, and were TLR3-dependent. By the second phase, the pancreas had regenerated but islets were smaller than normal and viral antigen was then detected in the pancreas for several days. These findings directly demonstrate pathogenic effects of rotavirus infection on the pancreas in vivo, mediated initially by the interaction of rotavirus double-stranded RNA with TLR3.
    PLoS ONE 09/2014; 9(9):e106560. DOI:10.1371/journal.pone.0106560 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T cell-receptor transgenic NOD8.3 mice provide a model for spontaneous type 1 diabetes development. Infection of 5 week-old NOD8.3 mice with Rhesus monkey rotavirus (RRV) accelerates the onset of their diabetes. This acceleration requires virus replication and relates to the presence and level of serum anti-rotavirus antibodies, but the role of individual RRV genes is unknown. Here we assessed the importance for diabetes acceleration of the RRV genes encoding VP4 and VP7, by infecting NOD8.3 mice with parental and reassortant rotaviruses. Diabetes was accelerated by reassortant rotaviruses containing RRV VP7 on a UK rotavirus genetic background, but not by parental UK or a UK reassortant containing RRV VP4 without VP7. Diabetes acceleration by reassortant rotaviruses containing RRV VP7 depended on the development of a high serum anti-rotavirus antibody titer. This study shows that VP7, together with an elevated anti-rotavirus antibody response, contributes to the acceleration of diabetes onset by RRV.
    Virology 09/2014; 468-470C:504-509. DOI:10.1016/j.virol.2014.09.011 · 3.28 Impact Factor

Preview

Download
2 Downloads
Available from