Magnetic resonance imaging in spinocerebellar ataxias.

Department of Neurodegeneration & Restorative Research, Centers of Molecular Physiology of the Brain and Neurological Medicine, University of Göttingen, Waldweg 33, D-37073 Göttingen, Germany.
The Cerebellum (Impact Factor: 2.6). 05/2008; 7(2):204-14. DOI: 10.1007/s12311-008-0025-0
Source: PubMed

ABSTRACT Magnetic resonance (MR) imaging is widely used to visualize atrophic processes that occur during the pathogenesis of spinocerebellar ataxias (SCAs). T1-weighted images are utilized to rate the atrophy of cerebellar vermis, cerebellar hemispheres, pons and midbrain. Signal changes in the basal ganglia and ponto-cerebellar fibers are evaluated by T2-weighted and proton density-weighted images. However, two-dimensional (2D) images do not allow a reliable quantification of the degree of atrophy. The latter is now possible through the application of three-dimensional (3D) true volumetric methods, which should be used for research purposes. Ideally, these methods should allow automated segmentation of contrast-defined boundaries by using region growing algorithms, which can be applied successfully in structures of the posterior fossa and basal ganglia. Thin slice thickness helps to minimize partial volume effects. Whereas volumetric approaches rely on predetermined anatomical boundaries, voxel-based morphometry has been developed to determine group differences between different types of SCA (cross-sectional studies) or within one SCA entity (longitudinal studies). We will review recent results and how these methods are currently used to (i) separate sporadic and dominantly inherited forms of cerebellar ataxias; (ii) identify specific SCA genotypes; (iii) correlate patho-anatomical changes with SCA disease symptoms or severity; and (iv) visualize and estimate the rate of progression in SCA.

  • [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: Spinocerebellar ataxias 1, 2 and 3 (SCA1, SCA2 and SCA3) are CAG repeat disorders. The prevalence of changes in the cortical excitability and central motor conduction time (CMCT) in these disorders is largely unknown, and there are few studies which have compared these findings in the subtypes of SCA. The objectives of this study were to measure the cortical resting motor threshold (RMT) and CMCT using transcranial magnetic stimulation in patients with SCA1, SCA2, and SCA3. METHODS: The subjects of this study were 32 genetically confirmed patients with SCA (SCA1 = 15, SCA2 = 11, SCA3 = 6). Transcranial magnetic stimulation (TMS) was performed using a figure-of-eight coil attached to Magstim 200 stimulator. Motor evoked potentials were recorded from first dorsal interosseous at rest. RMT was determined using standard techniques and the CMCT by 'F' wave method. Comparison was made with data from 32 healthy controls. RESULTS: Compared to controls, the patients with SCA had significantly higher mean RMT as well as CMCT (RMT: 49.9 ± 9.1 vs. 41.5 ± 6.6, p < 0.0001; CMCT: 7.7 ± 2.3 ms vs. 4.8 ± 0.6 ms; p < 0.0001). When compared separately with the controls, while all the three subtypes of SCAs had significantly prolonged CMCT, only SCA1 and SCA3, but not SCA2 had significantly greater RMT. RMT and CMCT between patients with SCA2 and SCA3, and between SCA1 and SCA3 did not differ significantly, while SCA1 had significantly higher RMT and CMCT than SCA2. CONCLUSIONS: Patients with SCA have reduced cortical excitability and prolonged central motor conduction time, which was most evident in SCA1 and least in SCA2.
    Parkinsonism & Related Disorders 12/2012; · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Spinocerebellar ataxia type 7 (SCA7) is a genetic disorder characterized by degeneration of the motor and visual systems. Besides neural deterioration, these patients also show functional connectivity changes linked to the degenerated brain areas. However, it is not known if there are functional connectivity changes in regions not necessarily linked to the areas undergoing structural deterioration. Therefore, in this study we have explored the whole-brain functional connectivity of SCA7 patients in order to find the overall abnormal functional pattern of this disease. Twenty-six patients and age-and-gender-matched healthy controls were recruited. Whole-brain functional connectivity analysis was performed in both groups. A classification algorithm was used to find the discriminative power of the abnormal connections by classifying patients and healthy subjects. Results: Nineteen abnormal functional connections involving cerebellar and cerebral regions were selected for the classification stage. Support vector machine classification reached 92.3% accuracy with 95% sensitivity and 89.6% specificity using a 10-fold cross-validation. Most of the selected regions were well known degenerated brain regions including cerebellar and visual cortices, but at the same time, our whole-brain connectivity analysis revealed new regions not previously reported involving temporal and prefrontal cortices. Conclusion: Our whole-brain connectivity approach provided information that seed-based analysis missed due to its region-specific searching method. The high classification accuracy suggests that using resting state functional connectivity may be a useful biomarker in SCA 7.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
    The Cerebellum 12/2013; · 2.60 Impact Factor