Article

Tied factor analysis for face recognition across large pose differences.

Department of Computer Sciences, University College London, London, UK.
IEEE Transactions on Pattern Analysis and Machine Intelligence (Impact Factor: 5.69). 07/2008; 30(6):970-84. DOI: 10.1109/TPAMI.2008.48
Source: PubMed

ABSTRACT Face recognition algorithms perform very unreliably when the pose of the probe face is different from the gallery face: typical feature vectors vary more with pose than with identity. We propose a generative model that creates a one-to-many mapping from an idealized "identity" space to the observed data space. In identity space, the representation for each individual does not vary with pose. We model the measured feature vector as being generated by a pose-contingent linear transformation of the identity variable in the presence of Gaussian noise. We term this model "tied" factor analysis. The choice of linear transformation (factors) depends on the pose, but the loadings are constant (tied) for a given individual. We use the EM algorithm to estimate the linear transformations and the noise parameters from training data. We propose a probabilistic distance metric which allows a full posterior over possible matches to be established. We introduce a novel feature extraction process and investigate recognition performance using the FERET, XM2VTS and PIE databases. Recognition performance compares favourably to contemporary approaches.

0 Bookmarks
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developing a reliable and practical face recognition system is a long-standing goal in computer vision research. Existing literature suggests that pixel-wise face alignment is the key to achieve high-accuracy face recognition. By assuming a human face as piece-wise planar surfaces, where each surface corresponds to a facial part, we develop in this paper a Constrained Part-based Alignment (CPA) algorithm for face recognition across pose and/or expression. Our proposed algorithm is based on a trainable CPA model, which learns appearance evidence of individual parts and a tree-structured shape configuration among different parts. Given a probe face, CPA simultaneously aligns all its parts by fitting them to the appearance evidence with consideration of the constraint from the tree-structured shape configuration. This objective is formulated as a norm minimization problem regularized by graph likelihoods. CPA can be easily integrated with many existing classifiers to perform part-based face recognition. Extensive experiments on benchmark face datasets show that CPA outperforms or is on par with existing methods for robust face recognition across pose, expression, and/or illumination changes.
    01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterogeneous face recognition is a challenging research problem which involves matching of the faces captured from different sensors. Very few methods have been designed to solve this problem using intensity features and considered small sample size issue. In this paper, we consider the worst case scenario when there exists a single instance of an individual image in a gallery with normal modality i.e. visual while the probe is captured with alternate modality, e.g. Near Infrared. To solve this problem, we propose a technique inspired from tied factor Analysis (TFA) and Bagging. In the proposed method, the original TFA method is extended to handle small training samples problem in heterogeneous environment. But one can report the higher recognition rates by testing on small subset of images. Therefore, bagging is introduced to remove the effects of biased results from original TFA method. Experiments conducted on a challenging benchmark HFB and Biosecure face databases validate its effectiveness and superiority over other state-of-the-art methods using intensity features holistically.
    Visual Information Processing (EUVIP), 2014 5th European Workshop, Paris , France; 12/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Face recognition in the wild can be defined as recognizing individuals unabated by pose, illumination, expression, and uncertainties from the image acquisition. In this paper, we propose a framework recognizing human faces under such uncertainties by focusing on the pose problem while considering the other factors together. The proposed work introduces an automatic front-end stereo-based system, which starts with image acquisition and ends by face recognition. Once an individual is detected by one of the stereo cameras, its facial features are identified using a facial features extraction model. These features are used to steer the second camera to see the same subject. Then, a stereo pair is captured and 3D face is reconstructed. The proposed stereo matching approach carefully handles illumination variance, occlusion, and disparity discontinuity. The reconstructed 3D shape is used to synthesize virtual 2D views in novel poses. All these steps are done off-line in an Enrollment stage. To recognize a face from a 2D image, which is captured under unknown environmental conditions, another fast on-line stage starts by facial features detection. Then, a facial signature is extracted from patches around these facial features. Finally, this probe image is matched against the closest synthesized images. Experiments are conducted on different public databases from where we investigate the effect of each component of the proposed framework on the recognition performance. The results confirm that without training and with automatic features extraction, our proposed face recognition at a distance approach outperforms most of the state-of-the-art approaches.
    IEEE Transactions on Information Forensics and Security 10/2014; 9(12):2158 - 2169. · 2.07 Impact Factor

Full-text (3 Sources)

Download
37 Downloads
Available from
May 29, 2014