ERK/p44p42 mitogen-activated protein kinase mediates EGF-Stimulated proliferation of conjunctival goblet cells in culture

Harvard University, Cambridge, Massachusetts, United States
Investigative ophthalmology & visual science (Impact Factor: 3.66). 05/2008; 49(8):3351-9. DOI: 10.1167/iovs.08-1677
Source: PubMed

ABSTRACT To determine whether activation of the ERK pathway by EGF leads to rat and human goblet cell proliferation.
The conjunctiva was removed from male Sprague-Dawley rats. Human conjunctiva was removed during ocular surgery. The tissue was minced and goblet cells were grown. The cells were stimulated with EGF (10(-7) M) for 1 and 5 minutes and Western blot analysis was performed with an antibody against phosphorylated EGFR, to measure the activation of the EGF receptor (EGFR). The cells were incubated with EGF (10(-7) M) for 24 hours, and cell proliferation was measured by WST-8. Inhibitors were added either 20 minutes before EGF or 2 hours after. The cells were stimulated with EGF (10(-7) M) for 1 minute to 24 hours. The number of cells expressing phosphorylated ERK (pERK) in the nucleus and Ki-67 was determined by immunofluorescence.
EGF increased the activation of EGFR in rat conjunctival goblet cells. EGF-stimulated proliferation was inhibited by the EGFR inhibitor AG1478 and the MEK inhibitor U0126 in rat and human cultured goblet cells. EGF caused the translocation of pERK to the nucleus in a biphasic manner. Inhibition of the second peak with U0126 prevented proliferation. EGF-stimulated goblet cells progressed through the cell cycle expressing pERK in the nucleus.
EGF stimulated human and rat conjunctival goblet cell proliferation by activating the EGFR. EGFR stimulated ERK causing its biphasic translocation to the nucleus. The second peak response is responsible for cell proliferation, but the role of the first peak is not known.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinases play a crucial role in the pathogenesis of inflammatory bowel disease (IBD), the two main forms of which are ulcerative colitis and Crohn's disease. In this article, we will review the mechanisms of involvement of protein kinases in the pathogenesis of and intervention against IBD, in terms of their effects on genetics, microbiota, mucous layer and tight junction, and the potential of protein kinases as therapeutic targets against IBD.
    11/2014; 5(4):209-17. DOI:10.4292/wjgpt.v5.i4.209
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review Although conjunctival goblet cells are a major cell type in ocular mucosa, their responses during ocular allergy are largely unexplored. This review summarizes the recent findings that provide key insights into the mechanisms by which their function and survival are altered during chronic inflammatory responses, including ocular allergy. Recent findings Conjunctiva represents a major component of the ocular mucosa that harbors specialized lymphoid tissue. Exposure of mucin-secreting goblet cells to allergic and inflammatory mediators released by the local innate and adaptive immune cells modulates proliferation, secretory function, and cell survival. Allergic mediators like histamine, leukotrienes, and prostaglandins directly stimulate goblet cell mucin secretion and consistently increase goblet cell proliferation. Goblet cell mucin secretion is also detectable in a murine model of allergic conjunctivitis. Additionally, primary goblet cell cultures allow evaluation of various inflammatory cytokines with respect to changes in goblet cell mucin secretion, proliferation, and apoptosis. These findings in combination with the preclinical mouse models help understand the goblet cell responses and their modulation during chronic inflammatory diseases, including ocular allergy. Summary Recent findings related to conjunctival goblet cells provide the basis for novel therapeutic approaches, involving modulation of goblet cell mucin production, to improve treatment of ocular allergies.
    Current Opinion in Allergy and Clinical Immunology 07/2014; 14(5). DOI:10.1097/ACI.0000000000000098 · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ocular surface including the cornea and conjunctiva and its overlying tear film are the first tissues of the eye to interact with the external environment. The tear film is complex containing multiple layers secreted by different glands and tissues. Each layer contains specific molecules and proteins that not only maintain the health of the cells on the ocular surface by providing nourishment and removal of waste products but also protect these cells from environment. A major protective mechanism that the corneal and conjunctival cells have developed is secretion of the innermost layer of the tear film, the mucous layer. Both the cornea and conjunctiva express membrane spanning mucins, whereas the conjunctiva also produces soluble mucins. The mucins present in the tear film serve to maintain the hydration of the ocular surface and to provide lubrication and anti-adhesive properties between the cells of the ocular surface and conjunctiva during the blink. A third function is to contribute to the epithelial barrier to prevent pathogens from binding to the ocular surface. This review will focus on the different types of mucins produced by the corneal and conjunctival epithelia. Also included in this review will be a presentation of the structure of mucins, regulation of mucin production, role of mucins in ocular surface diseases, and the differences in mucin production by the ocular surface, airways and gastrointestinal tract.
    Experimental Eye Research 08/2013; DOI:10.1016/j.exer.2013.07.027 · 3.02 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014