Drosophila Naked cuticle (Nkd) engages the nuclear import adaptor Importin-alpha3 to antagonize Wnt/beta-catenin signaling.

Laboratory of Molecular Pathology, Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390-9072, USA.
Developmental Biology (Impact Factor: 3.87). 07/2008; 318(1):17-28. DOI: 10.1016/j.ydbio.2008.02.050
Source: PubMed

ABSTRACT Precise control of Wnt/beta-catenin signaling is critical for animal development, stem cell renewal, and prevention of disease. In the fruit fly Drosophila melanogaster, the naked cuticle (nkd) gene limits signaling by the Wnt ligand Wingless (Wg) during embryo segmentation. Nkd is an intracellular protein that is composed of separable membrane- and nuclear-localization sequences (NLS) as well as a conserved EF-hand motif that binds the Wnt receptor-associated scaffold protein Dishevelled (Dsh), but the mechanism by which Nkd inhibits Wnt signaling remains a mystery. Here we identify a second NLS in Nkd that is required for full activity and that binds to the canonical nuclear import adaptor Importin-alpha3. The Nkd NLS is similar to the Importin-alpha3-binding NLS in the Drosophila heat-shock transcription factor (dHSF), and each Importin-alpha3-binding NLS required intact basic residues in similar positions for nuclear import and protein function. Our results provide further support for the hypothesis that Nkd inhibits nuclear step(s) in Wnt/beta-catenin signaling and broaden our understanding of signaling pathways that engage the nuclear import machinery.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cabut (Cbt) is a C(2)H(2)-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins.
    PLoS ONE 01/2012; 7(2):e32004. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The multifunctional factors Imp-α and Imp-β are involved in nuclear protein import, mitotic spindle dynamics, and nuclear membrane formation. Furthermore, each of the three members of the Imp-α family exerts distinct tasks during development. In Drosophila melanogaster, the imp-α2 gene is critical during oogenesis for ring canal assembly; specific mutations, which allow oogenesis to proceed normally, were found to block early embryonic mitosis. Here, we show that imp-α2 and imp-β genetically interact during early embryonic development, and we characterize the pattern of defects affecting mitosis in embryos laid by heterozygous imp-α2(D14) and imp-β(KetRE34) females. Embryonic development is arrested in these embryos but is unaffected in combinations between imp-β(KetRE34) and null mutations in imp-α1 or imp-α3. Furthermore, the imp-α2(D14)/imp-β(KetRE34) interaction could only be rescued by an imp-α2 transgene, albeit not imp-α1 or imp-α3, showing the exclusive imp-α2 function with imp-β. Use of transgenes carrying modifications in the major Imp-α2 domains showed the critical requirement of the nuclear localization signal binding (NLSB) site in this process. In the mutant embryos, we found metaphase-arrested mitoses made of enlarged spindles, suggesting an unrestrained activity of factors promoting spindle assembly. In accordance with this, we found that Imp-β(KetRE34) and Imp-β(KetD) bind a high level of RanGTP/GDP, and a deletion decreasing RanGTP level suppresses the imp-β(KetRE34) phenotype. These data suggest that a fine balance among Imp-α2, Imp-β, RanGTP, and the NLS cargos is critical for mitotic progression during early embryonic development.
    G3-Genes Genomes Genetics 01/2012; 2(1):1-14. · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Notch signaling pathway controls diverse cell-fate specification events throughout development. The versatility of this pathway to influence different aspects of development comes from its multiple levels of regulation. Upon ligand-induced Notch activation, the Notch intracellular domain (Notch-ICD) is released from the membrane and translocates to the nucleus, where it transduces Notch signals by regulating the transcription of downstream target genes. But the exact mechanism of translocation of Notch-ICD into the nucleus is not clear. Here, we implicate Importin-α3 (also known as karyopherin-α3) in the nuclear translocation of Notch-ICD in Drosophila. Our present analyses reveal that Importin-α3 can directly bind to Notch-ICD and loss of Importin-α3 function results in cytoplasmic accumulation of the Notch receptor. Using MARCM (Mosaic Analysis with a Repressible Cell Marker) technique, we demonstrate that Importin-α3 is required for nuclear localization of Notch-ICD. These results reveal that the nuclear transport of Notch-ICD is mediated by the canonical Importin-α3/Importin-β transport pathway. In addition, co-expression of both Notch-ICD and Importin-α3 displays synergistic effects on cell proliferation. Taken together, our results suggest that Importin-α3 mediated nuclear import of Notch-ICD may play important role in regulation of Notch signaling.
    PLoS ONE 01/2013; 8(7):e68247. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014